MICA: The molecular mechanisms of control of cerebral blood flow by the TMEM16A Cl- channel and their potential for pharmacological intervention
MICA:TMEM16A Cl-通道控制脑血流的分子机制及其药物干预的潜力
基本信息
- 批准号:MR/X010511/1
- 负责人:
- 金额:$ 121.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Everything we do in our daily life requires activation of specific parts of the brain. When a brain region is active, the nerve cells (the main information processing cells in the brain) in that region need energy. Consequently, blood must be diverted to the active area to ensure the nerve cells receive enough oxygen and nutrients to power their work. This process relies on cells called pericytes that surround the capillaries. Pericytes can contract and relax and, in so doing, direct blood flow to regions that most need it. Disease may arise when pericytes malfunction. For example, pericytes constrict capillaries too much in conditions such as Alzheimer's disease and stroke, and this leads to damage of the nerve cells in the brain. While we do not fully understand how pericytes contract and relax, our recent work suggests that a component of the cell, a protein that forms a hole (or channel) across the cell membrane, called TMEM16A, plays a very important role. The TMEM16A channel allows charged chloride ions to move across the cell membrane and the resulting voltage change triggers the contraction of the pericyte. When the channel is open, chloride ions flow out of the cell and the pericyte contracts; when the channel is closed, this current is suppressed and the pericyte is relaxed. Having made this initial exciting observation, we now wish to understand exactly how the chloride current controls the pericyte and how malfunction of this channel can lead to problems in the living brain (as is suggested by a genetic analysis we have carried out). We also wish to know if drugs can be used to block the channel (like a cork in a bottle) to prevent the current and dilate the capillaries in pathological conditions, such as stroke and dementia, when the pericytes contract too much. We will use a variety of techniques, from measurement of chloride currents in pericytes to advanced microscopy in the living brain, to address this important aim. Crucially, we will combine our expertise in cellular and whole body biology with that of colleagues in industry, who are experts in discovering and developing new medicines, and doctors who work in hospitals and have intimate understanding of diseases of blood vessels of the brain. Our work will reveal new aspects of cell and brain biology and lay the foundation for new treatments for a range of neurological conditions.
我们在日常生活中所做的一切都需要激活大脑的特定部分。当大脑区域活跃时,该区域的神经细胞(大脑中的主要信息处理细胞)需要能量。因此,血液必须转移到活动区域,以确保神经细胞获得足够的氧气和营养来为其工作提供动力。这个过程依赖于包围毛细血管的周细胞。周细胞可以收缩和舒张,这样就可以将血流引导到最需要的部位。当周细胞功能失常时,就可能发生疾病。例如,在阿尔茨海默病和中风等疾病中,周细胞会过度收缩毛细血管,这会导致大脑中神经细胞的损伤。虽然我们还不完全了解周细胞如何收缩和放松,但我们最近的工作表明,细胞的一种成分,即一种在细胞膜上形成孔(或通道)的蛋白质,称为TMEM 16 A,发挥着非常重要的作用。TMEM 16 A通道允许带电荷的氯离子穿过细胞膜,由此产生的电压变化触发周细胞的收缩。当通道打开时,氯离子流出细胞,周细胞收缩;当通道关闭时,这种电流被抑制,周细胞放松。在完成了这个令人兴奋的初步观察之后,我们现在希望确切地了解氯电流是如何控制周细胞的,以及这个通道的故障如何导致活脑中的问题(正如我们进行的遗传分析所建议的那样)。我们还希望知道,当周细胞收缩过多时,是否可以使用药物来阻断通道(就像瓶子中的软木塞),以防止电流并在病理条件下扩张毛细血管,例如中风和痴呆症。我们将使用各种技术,从测量周细胞中的氯电流到活体大脑中的先进显微镜,来实现这一重要目标。至关重要的是,我们将把我们在细胞和全身生物学方面的专业知识与工业界的同事结合起来,他们是发现和开发新药的专家,以及在医院工作并对大脑血管疾病有深入了解的医生。我们的工作将揭示细胞和大脑生物学的新方面,并为一系列神经系统疾病的新疗法奠定基础。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The TMEM16A anion channel as a versatile regulator of vascular tone
TMEM16A 阴离子通道作为血管张力的多功能调节器
- DOI:10.1126/scisignal.adk5661
- 发表时间:2023
- 期刊:
- 影响因子:7.3
- 作者:Tammaro P
- 通讯作者:Tammaro P
Identification of determinants of lipid and ion transport in TMEM16/anoctamin proteins through a Bayesian statistical analysis.
- DOI:10.1016/j.bpc.2024.107194
- 发表时间:2024-02
- 期刊:
- 影响因子:3.8
- 作者:Oscar Moran;Paolo Tammaro
- 通讯作者:Oscar Moran;Paolo Tammaro
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paolo Tammaro其他文献
New insights into the molecular basis of allosteric activation of the TMEM16A channel and consequences for the control of vascular tone
- DOI:
10.1016/j.bpj.2022.11.2463 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Rumaitha Al Hosni;Emilio Agostinelli;Zeki Ilkan;Lara F. Scofano;Kathryn Acheson;Andrew MacDonald;Dean Rivers;Martin Gunthorpe;Frances Platt;Paolo Tammaro - 通讯作者:
Paolo Tammaro
Inhibition of TMEM16A by Docosahexaenoic Acid Plays a Crucial Role in Blood Vessel Relaxation
- DOI:
10.1016/j.bpj.2018.11.956 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Kathryn E. Acheson;Paolo Tammaro - 通讯作者:
Paolo Tammaro
1142-187 Three-dimensional echocardiographic and magnetic resonance assessment of the effect of telmisartan compared with carvedilol on left ventricular mass: A multicenter, randomized, controlled study
- DOI:
10.1016/s0735-1097(04)92176-6 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
Domenico Galzerano;Luca Del Viscovo;Paolo Tammaro;Carlo Tedeschi;Roberto Breglio;Diana Lama;Antonio Cerciello;Bernardino Tuccillo;Paolo Capogrosso - 通讯作者:
Paolo Capogrosso
Molecular Mechanism of Modulation of the TMEM16A Channel by Anthracene-9-Carboxylic Acid: Implications for Channel Gating
- DOI:
10.1016/j.bpj.2019.11.1823 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Ria Dinsdale;Angela Russell;Phillip J. Stansfeld;Paolo Tammaro - 通讯作者:
Paolo Tammaro
Paolo Tammaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paolo Tammaro', 18)}}的其他基金
Linking the lipid-sensing TMEM16A channel with lysosomal lipid storage mechanisms: implications for drug discovery
将脂质感应 TMEM16A 通道与溶酶体脂质储存机制联系起来:对药物发现的影响
- 批准号:
BB/T007664/1 - 财政年份:2020
- 资助金额:
$ 121.63万 - 项目类别:
Research Grant
Towards an understanding of the molecular mechanisms that underlie the function of vascular ATP-sensitive potassium (KATP) channels
了解血管 ATP 敏感钾 (KATP) 通道功能的分子机制
- 批准号:
BB/H000259/1 - 财政年份:2009
- 资助金额:
$ 121.63万 - 项目类别:
Research Grant
相似国自然基金
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
PET/MR多模态分子影像在阿尔茨海默病炎症机制中的研究
- 批准号:82372073
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
- 批准号:82373145
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
O6-methyl-dGTP抑制胶质母细胞瘤的作用及分子机制研究
- 批准号:82304565
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
- 批准号:82372328
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Irisin通过整合素调控黄河鲤肌纤维发育的分子机制研究
- 批准号:32303019
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
转录因子LEF1低表达抑制HMGB1致子宫腺肌病患者子宫内膜容受性低下的分子机制
- 批准号:82371704
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
上皮细胞黏着结构半桥粒在热激保护中的作用机制研究
- 批准号:31900545
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 121.63万 - 项目类别:
Standard Grant
CAREER: Understanding the Molecular Mechanisms of Insect Cuticular Chitin Maintenance
职业:了解昆虫表皮几丁质维持的分子机制
- 批准号:
2338209 - 财政年份:2024
- 资助金额:
$ 121.63万 - 项目类别:
Continuing Grant
The Effect and Molecular Mechanisms of HIV-induced Host RNA Modification
HIV诱导宿主RNA修饰的作用及分子机制
- 批准号:
24K18453 - 财政年份:2024
- 资助金额:
$ 121.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Molecular mechanisms of tardigrade disordered proteins adapted to protect against environmental stress
职业:缓步动物无序蛋白质适应环境压力的分子机制
- 批准号:
2338323 - 财政年份:2024
- 资助金额:
$ 121.63万 - 项目类别:
Continuing Grant
Molecular mechanisms that regulate the kinetics of neurotransmitter release
调节神经递质释放动力学的分子机制
- 批准号:
DP240102418 - 财政年份:2024
- 资助金额:
$ 121.63万 - 项目类别:
Discovery Projects
Developmental mechanisms specifying vagal innervation of organ targets
指定器官目标迷走神经支配的发育机制
- 批准号:
10752553 - 财政年份:2024
- 资助金额:
$ 121.63万 - 项目类别:
Elucidating molecular mechanisms of the water-induced swallowing reflex under non-thirsty and thirsty conditions: the importance of TRPV4
阐明非口渴和口渴条件下水诱导吞咽反射的分子机制:TRPV4的重要性
- 批准号:
24K12880 - 财政年份:2024
- 资助金额:
$ 121.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Adaptation of marine zooplankton to climate change conditions: a multi-omic study of molecular mechanisms.
海洋浮游动物对气候变化条件的适应:分子机制的多组学研究。
- 批准号:
23K25049 - 财政年份:2024
- 资助金额:
$ 121.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Edinburgh Molecular Mechanisms Cluster
爱丁堡分子机制集群
- 批准号:
MR/Y030877/1 - 财政年份:2024
- 资助金额:
$ 121.63万 - 项目类别:
Research Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319096 - 财政年份:2024
- 资助金额:
$ 121.63万 - 项目类别:
Standard Grant