Automated Direct Micropatterning Platform for bespoke in vitro cell microenvironment using Molecular Plasma

使用分子等离子体定制体外细胞微环境的自动直接微图案化平台

基本信息

  • 批准号:
    MR/X012891/1
  • 负责人:
  • 金额:
    $ 28.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

In vitro platforms are key tools to answer fundamental questions about biology and diseases. One of the strategies to produce a complex cell culture system is micropatterning, enabling control over cell and tissue architecture in vitro to explore and dissect the relationship between cell and tissue architecture and resulting function and behaviour configurations in various fields such as disease modelling, immunology, or neurobiology. The two main techniques used for micropatterning, micro contract printing and deep UV micropatterning, require complex, multistep, manual operations, lengthy incubation time, and are limited in application and reproducibility therefore not suitable for high throughput assays and limited in their applications and development.As part of its Biomaterial and Microfluidics service, the Making Lab wishes to take advantage of the recent advances in molecular plasma for patterning to propose a cutting-edge fully automated equipment, whose rapid implementation, simplicity of operation and versatility will immediately benefit research at the CrickCold atmospheric Molecular plasma is an interesting technology that use the plasma as a vector to graft various chemistry (antibodies, peptides, proteins, epoxy, acrylic, etc) directly onto any substrate in a single-step, solvent-free, scalable atmospheric process at room temperature. Moreover, this process can be adapted to any type of support used in biology including s challenging ones used for low volumes or high throughput experiments.Combining micropatterning masks (i.e. mask with negative features letting the plasma and molecules imprint them on the support's surface), a cold atmospheric plasma with coaxial biomolecule deposition, and a computer numerical control (CNC) manufacturing system, it allows programming and automation of surface treatment.In practice, a stream of inert gas is used to create a plasma projected through a pattern on the support's surface while a solution containing the molecule in aerosol form is coaxially distributed to bind to the plasma on the surface. The coating sequence is programmed on the machine's software and can be adapted to any type of surface and dish fitting into an A4 surface. A custom adapter placed on top of the plasma allows the use of multiple heads to allow the coating of the entire surface, parts only or patterns. The proposed development of a custom writing plasma head for the instrument and the associated protocols to apply it to biological research represents a unique opportunity to significantly increase the impact that this instrument could have on the development of new projectUltimately this equipment allows to address a wide range of areas such as cell growth, cell migration, organdies, microfabrication of microstructures substrate and microfluidics. This technology will immediately benefit laboratories working in the areas of bioengineering, developmental biology, cell biology, infection and immunity, gene regulation, neuroscience, nanofabrication, biosensing. For example, it will help better understand the dynamic interactions between human macrophages and Mycobacterium tuberculosis (Mtb) during early infection state, or describe the dynamic behind the vascular topology, contribute to finding ways to model the nervous system more accurately and see how conditions like motor neurone disease (MND) damage it and to automatically assay arrays of 3D cell cultures to enable their use in drug discovery.
体外平台是回答有关生物学和疾病的基本问题的关键工具。生产复杂细胞培养系统的策略之一是微图案化,能够在体外控制细胞和组织结构,从而探索和剖析细胞和组织结构之间的关系以及在疾病建模、免疫学或神经生物学等各个领域中产生的功能和行为配置。用于微图案化的两种主要技术,微合同印刷和深紫外微图案化,需要复杂、多步骤、手动操作、较长的孵育时间,并且在应用和再现性方面受到限制,因此不适合高通量测定,并且其应用和开发受到限制。作为其生物材料和微流体服务的一部分,制造实验室希望利用分子等离子体图案化的最新进展来提出一种 尖端的全自动设备,其快速实施、操作简单和多功能性将立即有利于 CrickCold 大气分子等离子体的研究。分子等离子体是一项有趣的技术,它使用等离子体作为载体,在室温下通过一步、无溶剂、可扩展的大气工艺将各种化学物质(抗体、肽、蛋白质、环氧树脂、丙烯酸等)直接接枝到任何基材上。此外,该工艺可适用于生物学中使用的任何类型的支持物,包括用于小批量或高通量实验的具有挑战性的支持物。结合微图案掩模(即具有负特征的掩模,让等离子体和分子将它们印在支持物的表面上)、具有同轴生物分子沉积的冷大气等离子体和计算机数控(CNC)制造系统,它允许编程和 表面处理的自动化。在实践中,惰性气体流用于产生通过支撑物表面上的图案投射的等离子体,同时含有气溶胶形式分子的溶液同轴分布以与表面上的等离子体结合。涂层顺序在机器软件上编程,可适应任何类型的表面和适合 A4 表面的盘子。放置在等离子顶部的定制适配器允许使用多个头来涂覆整个表面、仅部分或图案。拟议开发的仪器定制写入等离子体头以及将其应用于生物研究的相关协议代表了一个独特的机会,可以显着增加该仪器对新项目开发的影响。最终,该设备可以解决细胞生长、细胞迁移、器官、微结构基底的微加工和微流体等广泛领域的问题。这项技术将立即使生物工程、发育生物学、细胞生物学、感染和免疫、基因调控、神经科学、纳米制造、生物传感等领域的实验室受益。例如,它将有助于更好地了解早期感染状态下人类巨噬细胞和结核分枝杆菌 (Mtb) 之间的动态相互作用,或描述血管拓扑背后的动态,有助于找到更准确地模拟神经系统的方法,并了解运动神经元疾病 (MND) 等疾病如何损害神经系统,并自动分析 3D 细胞培养物阵列,使其能够用于药物发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Albane Imbert其他文献

A low-cost device for cryoanesthesia of neonatal rodents
一种用于新生啮齿动物冷冻麻醉的低成本装置
  • DOI:
    10.1101/2022.06.09.495437
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bradley B Jamieson;Xavier Cano;G. Konstantinou;Elisa de Launoit;N. Renier;Albane Imbert;Johannes Kohl
  • 通讯作者:
    Johannes Kohl
Frictiotaxis underlies focal adhesion-independent durotaxis
摩擦趋性是不依赖粘着斑的硬度趋性的基础
  • DOI:
    10.1038/s41467-025-58912-1
  • 发表时间:
    2025-04-23
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Adam Shellard;Kai Weißenbruch;Peter A. E. Hampshire;Namid R. Stillman;Christina L. Dix;Richard Thorogate;Albane Imbert;Guillaume Charras;Ricard Alert;Roberto Mayor
  • 通讯作者:
    Roberto Mayor

Albane Imbert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于 Direct RNA sequencing 的 RNA 甲基化介导贻贝天然免疫调控的表观遗传机制研究
  • 批准号:
    LR22D060002
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型滤波器综合技术-直接综合技术(Direct synthesis Technique)的研究及应用
  • 批准号:
    61671111
  • 批准年份:
    2016
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Direct Measurement of Interfacial Energies in Ceramics
陶瓷界面能的直接测量
  • 批准号:
    2414106
  • 财政年份:
    2024
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Continuing Grant
Direct identificationによる膵癌HLAリガンドームの解明
通过直接鉴定阐明胰腺癌 HLA 配体组
  • 批准号:
    24K10425
  • 财政年份:
    2024
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
  • 批准号:
    24K17589
  • 财政年份:
    2024
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Next Generation Glioma Treatments using Direct Light Therapy
使用直接光疗法的下一代神经胶质瘤治疗
  • 批准号:
    10092859
  • 财政年份:
    2024
  • 资助金额:
    $ 28.54万
  • 项目类别:
    EU-Funded
Direct conversionによる誘導腱細胞を用いた横隔膜筋腱複合体MTCシートの開発
使用诱导肌腱细胞直接转化开发膈肌肌腱复合体 MTC 片
  • 批准号:
    24K10982
  • 财政年份:
    2024
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: Direct Ink Writing of Molecularly Patterned Polyionic Actuators
EAGER:分子图案化聚离子致动器的直接墨水书写
  • 批准号:
    2232659
  • 财政年份:
    2024
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Standard Grant
新規direct-cKOシステムでの必須遺伝子探索とその網羅的解析基盤の構築
利用新的direct-cKO系统寻找必需基因并构建综合分析平台
  • 批准号:
    23K23800
  • 财政年份:
    2024
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Early-life climate sensitivity: direct and indirect mechanisms
生命早期的气候敏感性:直接和间接机制
  • 批准号:
    DP240100330
  • 财政年份:
    2024
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Discovery Projects
Hybrid Thermal Probe and Laser for Direct Writing of Advanced Nano Sensors (HyProLaSens)
用于直接写入高级纳米传感器的混合热探针和激光 (HyProLaSens)
  • 批准号:
    531412015
  • 财政年份:
    2024
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Major Research Instrumentation
Fast 4D-STEM direct electron detection system
快速4D-STEM直接电子检测系统
  • 批准号:
    536748771
  • 财政年份:
    2024
  • 资助金额:
    $ 28.54万
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了