Subcellular spatial molecular imager for in-situ hi-plex multi-omic analysis of biological tissue specimens

用于生物组织样本原位多组学分析的亚细胞空间分子成像仪

基本信息

  • 批准号:
    MR/X013626/1
  • 负责人:
  • 金额:
    $ 38.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

CONTEXT OF RESEARCHIn the 1600s pioneers of the microscope, coined the term 'cell' to describe structures observed under magnification; 400 years later, the word and concept remains. Indeed, our understanding of 'cell theory' underpins every aspect of health and disease, from immune cells making antibodies against viruses, or neurons storing memories. To truly understand a complex organ such as the brain it is imperative to have a census not only of cell types that compose it, but also their functions. Previously, to measure which genes were 'switched-on or off', tissue samples had to be digested before analysis and so 'geography' of position of diseased tissue or immune cells on the disease battlefield' was lost.We are realising that the same cell may have a completely different role depending on its position in an organ or diseased tissue like cancer. This idea underpins the concept of spatial biology. In essence how does the environment that cell resides in impact what it does, how does it influence surrounding cells, and can this information help us understand how a disease might progress or respond to treatment? Furthermore, it is becoming apparent of the importance of knowing where in the cell the gene resides (nucleus, membrane, cytoplasm) as this may impact what role it has.OVERALL AIMWe plan to use a novel molecular microscope (CosMx Spatial Molecular Imager) to measure exact 3-dimensional location of thousands of genes and protein molecules simultaneously within a cell using real-world sections of human tissue while maintaining the tissue architecture.OBJECTIVES-We will generate incredibly detailed 'Spatial Maps' providing information on type and location of every normal cell, immune cell and diseased cell in a tissue specimen.-We will discover how cells in this immune system 'atlas' interact in healthy and diseased tissues.-We will focus the microscope to even higher resolutions to study the position of genes and proteins within cell compartments providing truly novel discovery in human disease.-We will study the 'cancer immune battlefield', in terms of: Location, Activity, Inter-relationships between the immune cells and cancer cells to identify how targeting the immune system could help more patients with cancer?Our objective is for the technology to be housed in a central facility to enable access for researchers from all specialties to study a wide spectrum of diseases and allowing answers to questions such as:-Why do therapies for rheumatoid arthritis not work for all patients?-What impact do infections like COVID19 have on the immune system in different organs?-How the immune system lead to degenerative changes in the brain?-How malarial parasites interact with blood vessels?POTENTIAL APPLICATIONS AND BENEFITSThe potential applications of this molecular microscope technology are vast. As a result of studying real-world tissue on normal glass microscope slides, it allows us to unlock tissue archives of diseases and investigate with incredible detail to make discovery that could help future patients. It has implications for a broad range of diseases from cancer, autoimmune, infection as well as study of the normal development of organs.This technology could impact upon how pathologists practice as rather than traditional 'visual' analysis of tissue, a comprehensive, molecular tissue exploration is now possible enabling every cell present to be not only identified but also to have its activity measured. Importantly these broad and detailed analysis can be performed in small biopsies from patients resulting in huge amounts of information that could in the future guide what therapy a patient receives from the time of diagnosis.Overall, this technology has potential to lay the foundation of the development of a precision medicine strategy providing the right treatment for the right patient at the right time for many diseases in particular cancer.
研究背景在17世纪,显微镜的先驱创造了“细胞”一词来描述在放大镜下观察到的结构; 400年后,这个词和概念仍然存在。事实上,我们对“细胞理论”的理解支撑着健康和疾病的各个方面,从免疫细胞制造抗病毒抗体,到神经元储存记忆。要真正了解像大脑这样复杂的器官,不仅要对组成它的细胞类型进行普查,还要对它们的功能进行普查。以前,为了测量哪些基因被“打开或关闭”,组织样本必须在分析之前消化,因此“疾病战场”上患病组织或免疫细胞位置的“地理”丢失。我们意识到,同一个细胞可能具有完全不同的作用,这取决于它在器官或病变组织(如癌症)中的位置。这一想法是空间生物学概念的基础。从本质上讲,细胞所处的环境如何影响它的行为,它如何影响周围的细胞,这些信息能否帮助我们了解疾病的进展或对治疗的反应?此外,了解基因在细胞中的位置的重要性也越来越明显(细胞核,细胞膜,细胞质),因为这可能会影响它的作用。总体目标我们计划使用一种新的分子显微镜(CosMx空间分子成像仪)使用真实的-我们将生成非常详细的“空间地图”,提供组织标本中每个正常细胞、免疫细胞和病变细胞的类型和位置信息。我们将发现这个免疫系统“图谱”中的细胞如何在健康和患病组织中相互作用。我们将把显微镜聚焦到更高的分辨率,以研究细胞内基因和蛋白质的位置,为人类疾病提供真正新颖的发现。我们将研究“癌症免疫战场”,在:位置,活动,免疫细胞和癌细胞之间的相互关系,以确定如何靶向免疫系统可以帮助更多的癌症患者?我们的目标是将该技术安置在一个中央设施中,使所有专业的研究人员能够研究各种疾病,并回答以下问题:-为什么类风湿关节炎的治疗方法不适用于所有患者?-像COVID 19这样的感染对不同器官的免疫系统有什么影响?免疫系统如何导致大脑的退行性变化?疟疾寄生虫如何与血管相互作用?潜在的应用和好处这种分子显微镜技术的潜在应用是巨大的。由于在普通玻璃显微镜载玻片上研究真实世界的组织,它使我们能够解锁疾病的组织档案,并以令人难以置信的细节进行调查,以发现可以帮助未来患者的发现。它对癌症、自身免疫性疾病、感染以及器官正常发育的研究都有着广泛的意义。这项技术可能会影响病理学家的实践,因为与传统的组织“视觉”分析不同,现在可以进行全面的分子组织探索,不仅可以识别存在的每一个细胞,还可以测量其活性。重要的是,这些广泛而详细的分析可以在患者的小活检中进行,从而产生大量的信息,这些信息可以在未来指导患者从诊断时开始接受什么样的治疗。总的来说,这项技术有潜力为精确医疗策略的发展奠定基础,为许多疾病,特别是癌症,在正确的时间为正确的患者提供正确的治疗。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A disease-associated gene desert orchestrates macrophage inflammatory responses via ETS2
  • DOI:
    10.1101/2023.05.05.539522
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Stankey;C. Bourges;T. Turner-Stokes;A. Piedade;C. Palmer-Jones;I. Papa;M. Dos Silva dos Santos;L. Randzavola;L. Speidel;E. Parkes;W. Edwards;A. Rochford;CD Murray;J. MacRae;P. Skoglund;C. Wallace;M. Cader;D. Thomas;Jcc Lee
  • 通讯作者:
    C. Stankey;C. Bourges;T. Turner-Stokes;A. Piedade;C. Palmer-Jones;I. Papa;M. Dos Silva dos Santos;L. Randzavola;L. Speidel;E. Parkes;W. Edwards;A. Rochford;CD Murray;J. MacRae;P. Skoglund;C. Wallace;M. Cader;D. Thomas;Jcc Lee
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nigel Jamieson其他文献

ASO Visual Abstract: Precursor Epithelial Subtypes of Adenocarcinoma Arising from Intraductal Papillary Mucinous Neoplasms (A-IPMN)—Clinicopathological Features, Recurrence and Response to Adjuvant Chemotherapy
  • DOI:
    10.1245/s10434-024-15827-3
  • 发表时间:
    2024-07-15
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    James Lucocq;Beate Haugk;Daniel Parkinson;Antony Darne;Nejo Joseph;Jake Hawkyard;Steve White;Omar Mownah;Krishna Menon;Takaki Furukawa;Yosuke Inoue;Yuki Hirose;Naoki Sasahira;Anubhav Mittal;Jas Samra;Amy Sheen;Michael Feretis;Anita Balakrishnan;Carlo Ceresa;Brian Davidson;Rupaly Pande;Bobby V. M. Dasari;Lulu Tanno;Dimitrios Karavias;Jack Helliwell;Alistair Young;Quentin Nunes;Tomas Urbonas;Michael Silva;Alex Gordon-Weeks;Jenifer Barrie;Dhanny Gomez;Stijn van Laarhoven;Hossam Nawara;Joseph Doyle;Ricky Bhogal;Ewen Harrison;Marcus Roalso;Deborah Ciprani;Somaiah Aroori;Bathiya Ratnayake;Jonathan Koea;Gabriele Capurso;Ruben Bellotti;Stefan Stättner;Tareq Alsaoudi;Neil Bhardwaj;Fraser Jeffery;Saxon Connor;Andrew Cameron;Nigel Jamieson;Keith Roberts;Kjetil Soreide;Anthony J. Gill;Sanjay Pandanaboyana
  • 通讯作者:
    Sanjay Pandanaboyana
The clinical and molecular landscape of early onset pancreatic cancer
  • DOI:
    10.1016/j.ejso.2023.107348
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephan Dreyer;Adam Bryce;Australian Pancreatic Cancer Genome Initiative;Andrew Biankin;Nigel Jamieson;David Chang
  • 通讯作者:
    David Chang
Tumour-associated macrophages, stromal collagen, and clinical outcome in resected pancreatic ductal adenocarcinoma
  • DOI:
    10.1016/j.ejso.2013.07.113
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Connelly;Nigel Jamieson;Ewan McGhee;Colin Nixon;Rod Ferrier;Jennifer Morton;Ross Carter;Colin McKay;Owen Sansom
  • 通讯作者:
    Owen Sansom
10. Precision Oncology in Surgery: Patient Selection Biomarkers for Operable Pancreatic Cancer
  • DOI:
    10.1016/j.ejso.2018.10.024
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephan Dreyer;Mark Pinese;Nigel Jamieson;Rosanna Upstill-Goddard;Fraser Duthie;Colin McKay;Andrew Biankin;David Chang
  • 通讯作者:
    David Chang

Nigel Jamieson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
  • 批准号:
    52368007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
  • 批准号:
    32371150
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
高铁影响空间失衡(Spatial Inequality)的多尺度变异机理的理论和实证研究
  • 批准号:
    51908258
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
考虑外源变量的空间copula插值模型的开发及其在降雨和地下水水质插值上的验证
  • 批准号:
    41101020
  • 批准年份:
    2011
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
空间数据不确定性的若干问题研究
  • 批准号:
    40352002
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Spatial metabolomics with subcellular resolution to identify therapeutic targets
具有亚细胞分辨率的空间代谢组学以确定治疗靶点
  • 批准号:
    10714487
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
Dissecting subcellular and cellular organization by spatial molecular neighborhood networks
通过空间分子邻域网络剖析亚细胞和细胞组织
  • 批准号:
    10713565
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
Interrogation of the cellular and subcellular architecture of nutrient metabolism in conditions of dietary restriction
饮食限制条件下营养代谢的细胞和亚细胞结构的询问
  • 批准号:
    10910343
  • 财政年份:
    2023
  • 资助金额:
    $ 38.56万
  • 项目类别:
Cell morphogenesis by the subcellular spatial segregation of molecular mobility on biomaterial surface
生物材料表面分子运动的亚细胞空间分离导致的细胞形态发生
  • 批准号:
    22K18200
  • 财政年份:
    2022
  • 资助金额:
    $ 38.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Universally-applicable RNA mapping at subcellular and single-base resolution
亚细胞和单碱基分辨率下普遍适用的 RNA 作图
  • 批准号:
    10473389
  • 财政年份:
    2022
  • 资助金额:
    $ 38.56万
  • 项目类别:
Computational methods for delineating subcellular and cellular spatial transcriptional heterogeneity along developmental trajectories
沿着发育轨迹描绘亚细胞和细胞空间转录异质性的计算方法
  • 批准号:
    10275922
  • 财政年份:
    2021
  • 资助金额:
    $ 38.56万
  • 项目类别:
Computational methods for delineating subcellular and cellular spatial transcriptional heterogeneity along developmental trajectories
沿着发育轨迹描绘亚细胞和细胞空间转录异质性的计算方法
  • 批准号:
    10677789
  • 财政年份:
    2021
  • 资助金额:
    $ 38.56万
  • 项目类别:
Computational methods for delineating subcellular and cellular spatial transcriptional heterogeneity along developmental trajectories
沿着发育轨迹描绘亚细胞和细胞空间转录异质性的计算方法
  • 批准号:
    10474625
  • 财政年份:
    2021
  • 资助金额:
    $ 38.56万
  • 项目类别:
Novel Platform for Quantitative Subcellular Resolution Imaging of Human Tissues Using Mass Spectrometry
使用质谱对人体组织进行定量亚细胞分辨率成像的新平台
  • 批准号:
    10441650
  • 财政年份:
    2018
  • 资助金额:
    $ 38.56万
  • 项目类别:
Subcellular Localization of Glutamate Spillover on to Inhibitory Interneurons in the Cerebellar Cortex
谷氨酸溢出到小脑皮质抑制性中间神经元的亚细胞定位
  • 批准号:
    10285980
  • 财政年份:
    2018
  • 资助金额:
    $ 38.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了