Novel approaches to define tissue fusion mechanisms in embryonic development.

定义胚胎发育中组织融合机制的新方法。

基本信息

  • 批准号:
    MR/X014339/1
  • 负责人:
  • 金额:
    $ 74.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Disruptions to how tissues fuse together during human development is a common cause of birth defects, affecting approximately 1 in 500 people in the UK. This research has been prompted because despite our best efforts, most patients born with problems such as cleft palate, spina bifida, and heart defects still don't have the genetic cause of their disorder identified. This often impacts genetic counselling and efforts towards prevention. We also remain unsure what impacts maternal environment have on these conditions (e.g. illness, vitamin deficiency, or substance abuse). This research aims to address these by performing transformative studies to reveal the key genes, cell behaviours, and molecular systems required for normal tissue fusion, and provide a step-change in our knowledge of how these can be perturbed.To enhance our understanding of fusion, we require experimentally versatile and appropriate model systems. I will focus on the causes of ocular coloboma, the leading inherited cause of blindness arising from a fusion defect of optic fissure closure (OFC) in the eye in the first 7 weeks of pregnancy. This defect leaves a persistent gap in the retina and optic nerve which cannot be cured or repaired. My group's work has established the chick eye as a powerful and tractable new model for fusion because of a unique combination of features: (i) it closely resembles OFC in humans; (ii) experiments can be performed inside the egg; and (iii) chick eyes are sufficiently large to accurately dissect fusing tissues for further experimentation. At Roslin Institute we have also developed unique transgenic chickens with fluorescent cells whose behaviours I can observe throughout OFC, and from which I can selectively isolate specific cells to reveal their unique gene expression profiles. This work will continue to combine these new technologies with other cutting-edge techniques in RNA sequencing, gene-network analysis, and cell behaviour modelling to generate a robust and accurate framework of OFC and tissue fusion information.Our research has defined several key genes involved in fusion in the embryonic eye, palate and inner ear. My group will further our understanding of these genes contribution to fusion by generating a more refined view of the molecular signatures for the cells directly taking part in the OFC fusion process. I will also determine the consequence of their loss or dysregulation to learn more about the genetic drivers and modifiers for specific cell behaviours during fusion. Understanding the function of the Netrin-1 gene is a key part of our work, as I have recently shown that this is an essential factor for normal OFC in diverse species, and that it is required for other developmental fusion contexts (eye, ear and palate). I will reveal how Netrin-1 and other fusion-specific genes regulate fusion and are regulated by genome-wide networks, allowing us to understand better the biological consequences of mutations identified in human patients, and to accurately predict new disease-causing candidate genes, and subsequently the effect of non-genetic factors on the regulation of gene expression in fusion.This is a powerful combination of tools to transform fusion biology. It will provide valuable information for how specific molecules and pathways function during embryogenesis, and how disruption to these can affect genetic and cellular programmes, directly or indirectly leading to developmental fusion defects. The information I reveal will help clinicians to uncover new causative mutations and provide evidence to support genetic counselling in affected families. In the longer term, my system will determine common tissue fusion mechanisms, and then how maternal environment can influence the causes of fusion defects, and help define strategies to reduce their incidence.
在人类发育过程中,组织融合方式的破坏是出生缺陷的常见原因,在英国,大约每500人中就有1人受到影响。这项研究之所以被推动,是因为尽管我们尽了最大的努力,但大多数先天性腭裂、脊柱裂和心脏缺陷等疾病的患者仍然没有确定其疾病的遗传原因。这往往影响遗传咨询和预防工作。我们也仍然不确定母亲的环境对这些疾病(例如疾病,维生素缺乏症或药物滥用)有什么影响。本研究旨在通过进行变革性研究来揭示正常组织融合所需的关键基因、细胞行为和分子系统,并为我们对这些如何被干扰的知识提供一个台阶。为了增强我们对融合的理解,我们需要实验通用和适当的模型系统。我将集中在眼缺损的原因,主要的遗传性失明的原因所产生的融合缺陷的视裂闭合(OFC)在眼睛在怀孕的前7周。这种缺陷会在视网膜和视神经中留下一个无法治愈或修复的永久性间隙。我的小组的工作已经建立了鸡眼作为一个强大的和易于处理的新模型融合,因为一个独特的组合功能:(i)它非常类似于OFC在人类;(ii)实验可以在鸡蛋内进行;(iii)鸡眼足够大,以准确地解剖融合组织,以进一步实验。在罗斯林研究所,我们还开发了独特的带有荧光细胞的转基因鸡,我可以在整个OFC中观察它们的行为,并且我可以选择性地分离特定的细胞,以揭示它们独特的基因表达谱。这项工作将继续结合联合收割机这些新技术与其他尖端技术在RNA测序,基因网络分析,细胞行为建模,以产生一个强大的和准确的框架OFC和组织融合的信息。我们的研究已经确定了几个关键基因参与融合在胚胎眼,腭和内耳。我的小组将通过产生直接参与OFC融合过程的细胞的分子特征的更精细的视图来进一步理解这些基因对融合的贡献。我还将确定它们丢失或失调的后果,以了解更多关于融合过程中特定细胞行为的遗传驱动因素和修饰剂。理解Netrin-1基因的功能是我们工作的关键部分,因为我最近表明,这是不同物种正常OFC的重要因素,也是其他发育融合环境(眼睛,耳朵和腭)所必需的。我将揭示Netrin-1和其他融合特异性基因如何调节融合,以及如何受到全基因组网络的调控,使我们能够更好地了解在人类患者中发现的突变的生物学后果,并准确预测新的致病候选基因,以及随后非遗传因素对融合中基因表达调控的影响。这是一个强大的工具组合,可以改变融合生物学。它将为特定分子和途径在胚胎发生过程中如何发挥作用,以及这些分子和途径的破坏如何影响遗传和细胞程序,直接或间接导致发育融合缺陷提供有价值的信息。我揭示的信息将帮助临床医生发现新的致病突变,并提供证据支持受影响家庭的遗传咨询。从长远来看,我的系统将确定常见的组织融合机制,然后母体环境如何影响融合缺陷的原因,并帮助确定降低其发生率的策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joe Rainger其他文献

A stable NTN1 fluorescent reporter chicken reveals cell specific molecular signatures during optic fissure closure
  • DOI:
    10.1038/s41598-025-94589-8
  • 发表时间:
    2025-03-24
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Brian Ho Ching Chan;Holly Hardy;Teresa Requena;Amy Findlay;Jason Ioannidis;Dominique Meunier;Maria Toms;Mariya Moosajee;Anna Raper;Mike J. McGrew;Joe Rainger
  • 通讯作者:
    Joe Rainger
Variant-specific disruption to notch signalling in emPAX6/em microphthalmia and aniridia patient-derived hiPSC optic cup-like organoids
在emPAX6/em小眼症和无虹膜患者来源的人诱导多能干细胞(hiPSC)视杯样类器官中,Notch信号传导的变异特异性破坏
  • DOI:
    10.1016/j.bbadis.2025.167869
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Philippa Harding;Nicholas Owen;Jonathan Eintracht;Dulce Lima Cunha;Brian Chan;Joe Rainger;Mariya Moosajee
  • 通讯作者:
    Mariya Moosajee

Joe Rainger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joe Rainger', 18)}}的其他基金

Novel approaches to define tissue fusion mechanisms in embryonic development
定义胚胎发育中组织融合机制的新方法
  • 批准号:
    MR/S033165/1
  • 财政年份:
    2019
  • 资助金额:
    $ 74.95万
  • 项目类别:
    Fellowship

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Fast-kinetics approaches to define direct gene-regulatory functions of MYB in leukemia
快速动力学方法定义 MYB 在白血病中的直接基因调控功能
  • 批准号:
    10644259
  • 财政年份:
    2023
  • 资助金额:
    $ 74.95万
  • 项目类别:
High-throughput, untargeted approaches to identify and define the functions of transcription factors regulating key life cycle transitions in Giardia
高通量、无针对性的方法来识别和定义调节贾第鞭毛虫关键生命周期转变的转录因子的功能
  • 批准号:
    10727571
  • 财政年份:
    2023
  • 资助金额:
    $ 74.95万
  • 项目类别:
Leveraging genomic approaches to define sterol transport in Cryptococcus neoformans
利用基因组方法定义新型隐球菌中的甾醇转运
  • 批准号:
    10727128
  • 财政年份:
    2023
  • 资助金额:
    $ 74.95万
  • 项目类别:
Systems Vaccinology Approaches to Define and Predict Immunity in Response to Nontyphoidal Salmonella Conjugate Vaccines
定义和预测非伤寒沙门氏菌结合疫苗免疫反应的系统疫苗学方法
  • 批准号:
    10428968
  • 财政年份:
    2022
  • 资助金额:
    $ 74.95万
  • 项目类别:
Systems Vaccinology Approaches to Define and Predict Immunity in Response to Nontyphoidal Salmonella Conjugate Vaccines
定义和预测非伤寒沙门氏菌结合疫苗免疫反应的系统疫苗学方法
  • 批准号:
    10559619
  • 财政年份:
    2022
  • 资助金额:
    $ 74.95万
  • 项目类别:
Exploiting immunotherapeutic approaches to define protective immune mechanisms to chronic GI nematode infections
利用免疫治疗方法来定义慢性胃肠道线虫感染的保护性免疫机制
  • 批准号:
    RGPIN-2018-06366
  • 财政年份:
    2022
  • 资助金额:
    $ 74.95万
  • 项目类别:
    Discovery Grants Program - Individual
Single cell approaches to define cellular programming by environmental stimuli (P02)
通过环境刺激定义细胞编程的单细胞方法(P02)
  • 批准号:
    448205857
  • 财政年份:
    2021
  • 资助金额:
    $ 74.95万
  • 项目类别:
    Collaborative Research Centres
Exploiting immunotherapeutic approaches to define protective immune mechanisms to chronic GI nematode infections
利用免疫治疗方法来定义慢性胃肠道线虫感染的保护性免疫机制
  • 批准号:
    RGPIN-2018-06366
  • 财政年份:
    2021
  • 资助金额:
    $ 74.95万
  • 项目类别:
    Discovery Grants Program - Individual
Challenging the dogmas of monocistronic genes and pseudogenes using proteogenomics and systems biology approaches to better define the human proteome in health and diseases
使用蛋白质基因组学和系统生物学方法挑战单顺反子基因和假基因的教条,以更好地定义健康和疾病中的人类蛋白质组
  • 批准号:
    436051
  • 财政年份:
    2020
  • 资助金额:
    $ 74.95万
  • 项目类别:
    Operating Grants
Exploiting immunotherapeutic approaches to define protective immune mechanisms to chronic GI nematode infections
利用免疫治疗方法来定义慢性胃肠道线虫感染的保护性免疫机制
  • 批准号:
    RGPIN-2018-06366
  • 财政年份:
    2020
  • 资助金额:
    $ 74.95万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了