REGULATION OF GLUTAMATE SYNTHESIS IN BACILLUS SUBTILIS
枯草芽孢杆菌谷氨酸合成的调控
基本信息
- 批准号:6197426
- 负责人:
- 金额:$ 24.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1986
- 资助国家:美国
- 起止时间:1986-09-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:Bacillus subtilis aconitate hydratase aminoacid biosynthesis bacterial genetics citrate synthase environmental adaptation enzyme activity gene induction /repression genetic promoter element genetic regulation glutamate ammonia ligase glutamate dehydrogenase glutamates intermolecular interaction isocitrate dehydrogenase microorganism culture microorganism growth microorganism metabolism site directed mutagenesis
项目摘要
The long-term goal of this project is to understand at the
molecular level the mechanisms that control synthesis and activity of the
enzymes that convert acetyl CoA and oxaloacetate to glutamate in Bacillus
subtilis. This pathway, which is critical for generation of energy, reducing
power, and biosynthetic building blocks, is also the junction between carbon
and nitrogen metabolism and plays a key regulatory role in bacterial
differentiation. Previous work on this project has led to the discovery or
identification of seven proteins (CcpC, CcpA, CodY, GltC, GltR, TnrA, and RocR)
that participate in regulation of the genes that encode these enzymes. The
specific aims of the present proposal are to uncover the molecular mechanisms
by which several of these regulatory proteins control transcription of the
citrate synthase, aconitase, isocitrate dehydrogenase, glutamate synthase, and
glutamate dehydrogenase genes and to discover the effector molecules that
control the activities of some of the regulatory proteins. The B. subtilis
system is the primary paradigm for studies of Gram-positive bacteria and of
prokaryotic differentiation. Fundamental studies of B. subtilis gene
expression, regulation of metabolism and response to the environment are highly
informative about the biology of related pathogenic bacteria and provide a
means of studying issues of universal biological importance in an organism that
is easily manipulated physiologically and genetically.
本项目的长期目标是了解
在分子水平上控制合成和活性的机制,
芽孢杆菌中将乙酰辅酶A和草酰乙酸转化为谷氨酸的酶
枯草杆菌。这一途径对产生能量至关重要,
能量和生物合成的基础材料也是碳和
和氮代谢,并在细菌中起着关键的调节作用,
分化该项目的前期工作已经导致了以下发现或
鉴定7种蛋白质(CcpC、CcpA、CodY、GltC、GltR、TnrA和RocR)
参与调控编码这些酶的基因。的
本建议的具体目标是揭示分子机制
这些调节蛋白中的几种通过其控制
柠檬酸合酶,乌头酸酶,异柠檬酸脱氢酶,谷氨酸合酶,和
谷氨酸脱氢酶基因,并发现效应分子,
控制一些调节蛋白的活动。B。枯草
系统是研究革兰氏阳性菌和
原核分化。B的基础研究。枯草杆菌基因
表达,代谢调节和对环境的反应是高度相关的。
提供有关致病菌的生物学信息,并提供
研究生物体中具有普遍生物学重要性的问题的方法,
很容易在生理和遗传上被操纵。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ABRAHAM Lincoln SONENSHEIN其他文献
ABRAHAM Lincoln SONENSHEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}