Taking Earth's volcanic pulse: understanding global volcanic hazards by unlocking the ice core archive
掌握地球火山脉搏:通过解锁冰芯档案了解全球火山危害
基本信息
- 批准号:MR/X024016/1
- 负责人:
- 金额:$ 75.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
At the start of 2022, a little studied Pacific Island volcano, Hunga Tonga-Hunga Ha apai, erupted with an energy ~1000x greater than the atomic bomb dropped on Hiroshima. This eruption created waves that reverberated around the Earth and sent up a volcanic plume that reached ~55 km, half-way to space. Although this eruption was devastating for Tonga, mercifully, from a global perspective, it was short in duration and did not occur in a densely populated area or one of vital food production, transport, or energy transmission. Had it done so there would have been major impacts on climate and society.Volcanologists study past volcanic events so that we can understand their return periods and impacts and help prepare society for the next 'big one'. Large eruptions loft enormous quantities of ash and gas into the atmosphere, these plumes undergo regional and global distribution and can travel thousands of kilometres from their source. In most surface environments the fine-grained volcanic fallout is rapidly washed away. Ice sheets are the exception to this, and by drilling into the ice and extracting core scientists can identify the sulfur-rich layers and ash deposited by these past eruptions. Although ice cores provide the undisputed best archive of past volcanism, interpreting this record is not straightforward and our current techniques tell us little about where the source volcano was located and what its climate impact might have been. Even in records that span the last 2500 years, we only know the location of 7 of the 25 largest volcanic eruptions.This project will develop novel ice core chemical analyses to extract detailed information on the source, style, and environmental impacts of past volcanism. It will take advantage of two recent breakthroughs in ice core research. The first is high time resolution chemical analysis of volcanic sulfur which provide critical information about the height the volcanic plume reached in the atmosphere and the proximity of the eruptive source to the ice sheet. The second is ash particle chemistry which can help pinpoint the volcanic source and setting. During the first phase of this fellowship, we validated these techniques for well-known eruptions where we already have good information on the eruptive source, style and climatic impacts. We set up new protocols to analyse tiny fragments of ash (many of which are smaller in diameter than a human hair) and developed a computer model that can predict the sulfur chemistry for different eruption styles, allowing us to infer the source and climate impact directly from the ice core fingerprint.In the final phase of this project, we will apply our new techniques to unravel the source and climate impacts of the greatest eruptions in the ice core archive. Many of these are mystery eruptions, where we know there was a massive sulfur emission, but we don't yet know the exact volcanic source. Understanding the source of these massive mystery eruptions is one of the outstanding challenges in volcanology and paleoclimate, and our techniques will undoubtedly provide fascinating insights into these exceptional events and stimulate new interactions between volcanologists, climatologists, and historians.This project will provide critical new information about volcanism on Earth. To ensure maximum impact we will embed these findings in global volcanic hazard databases which will be used by scientists, governments, and industry (e.g., aviation and insurance) to quantify the magnitude, frequency and style of past eruptions and improve forecasts of future volcanic events. Our work will provide fundamental insights the climate impacts of past eruptions and will also help scientists and policy makers to target volcano monitoring in regions of the globe that are prone to large volcanic events. Ultimately, with this knowledge we will be better prepared for the next 'big one' and this will help limit the loss of life and reduce the economic losses.
2022年初,匈牙利·汤加·洪加(Hunga Tonga-Hunga Ha Apai)的一条研究的太平洋岛火山爆发,其能量比在广岛上掉落的原子弹大约1000倍。这次喷发产生了波浪,在地球上回荡,并寄出了一个大约55公里的火山羽流,到达了太空。尽管从全球的角度来看,这次喷发对汤加造成了毁灭性的灾难性,但持续时间很短,在人口稠密的地区或重要的粮食生产,运输或能源传播中没有发生。这样做会对气候和社会产生重大影响。Volcanologist研究过去的火山事件,以便我们可以理解他们的返回期和影响,并帮助社会为下一个“大个子”做好准备。大量爆发大量的灰分和气体进入了大气中,这些羽毛经历了区域和全球分布,并且可以从其来源出发数千公里。在大多数表面环境中,细粒的火山辐射迅速被冲走。冰盖是一个例外,通过钻入冰块并提取核心科学家可以识别这些过去喷发沉积的富含硫的层和灰烬。尽管冰芯提供了过去火山的无可争议的最佳档案,但解释这一记录并不简单,我们当前的技术几乎没有告诉我们源火山的位置以及其气候影响可能是什么。即使在过去2500年的记录中,我们也只知道25个最大的火山喷发中的7个位置。该项目将开发新型的ICE Core Chemical Analysis,以提取有关过去火山主义的来源,风格和环境影响的详细信息。它将利用冰核研究最近的两个突破。第一个是火山硫的高时间分辨率分析,该化学分析提供了有关大气中火山羽流的高度以及喷发源与冰盖的接近度的关键信息。第二个是灰分颗粒化学反应,它可以帮助查明火山源和设置。在这一奖学金的第一阶段,我们验证了这些技术的著名喷发,在这些喷发中,我们已经拥有有关喷发源,风格和气候影响的良好信息。我们设置了新的协议,以分析灰烬的微小碎片(其中许多直径比人的头发小),并开发了一种计算机模型,该模型可以预测不同喷发样式的硫化学,从而使我们能够直接推断出冰核指纹的源头和气候影响。在该项目的最终阶段,我们将应用新技术,以实现我们的新技术,并在冰上构成了冰镇的范围。其中许多是神秘的喷发,我们知道那里有大量的硫发射,但我们还不知道确切的火山源。了解这些巨大的神秘爆发的来源是火山学和古气候方面的杰出挑战之一,我们的技术无疑将为这些特殊事件提供迷人的见解,并刺激火山学家,气候学家和历史学家之间的新互动。这项项目将提供有关地球上有关地球上世界的重要信息。为了确保最大的影响,我们将将这些发现嵌入全球火山危险数据库中,这些数据库将由科学家,政府和行业(例如航空和保险)使用,以量化过去喷发的大小,频率和风格,并改善对未来火山事件的预测。我们的工作将为过去喷发的气候影响提供基本的见解,还将帮助科学家和政策制定者针对地球地区的火山监测,这些地区容易受到大型火山活动的影响。最终,有了这些知识,我们将为下一个“大个子”做好准备,这将有助于限制生命损失并减少经济损失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Hutchison其他文献
Moths are less attracted to light traps than they used to be
与以前相比,飞蛾对光陷阱的吸引力减弱了
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.9
- 作者:
Ian Battles;Eric Burkness;Michael S. Crossley;Collin B. Edwards;Kristian Holmstrom;William Hutchison;J. Ingerson;David Owens;Avalon C.S. Owens - 通讯作者:
Avalon C.S. Owens
Corrigendum to “New insights into the ∼ 74 ka Toba eruption from sulfur isotopes of polar ice cores” published in Clim. Past, 17, 2119–2137, 2021
对“来自极地冰芯硫同位素的~74 ka Toba喷发的新见解”的勘误发表于Clim Past,2119-2137,2021年。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
L. Crick;Andrea Burke;William Hutchison;Mika Kohno;3. KathrynA.Moore;4. JoelSavarino;E. Doyle;Sue Mahony;S. Kipfstuhl;J. Rae;1. RobertC.J.Steele;.. Stephen;. Sparks 6;Eric W. Wolff - 通讯作者:
Eric W. Wolff
Recruitment of the indirect pathway by subthalamic deep brain stimulation
- DOI:
10.1016/j.brs.2023.01.815 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Leon Amadeus Steiner;David Crompton;Srdjan Sumarac;Artur Vetkas;Jürgen Germann;Maximilian Scherer;Popovic Milos;Suneil Kalia;Andres Lozano;William Hutchison;Milad Lankarany;Andrea Kühn;Luka Milosevic - 通讯作者:
Luka Milosevic
A new tephrochronological record of a raised bog in eastern lowland Scotland
- DOI:
10.1016/j.quageo.2024.101647 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Li Wang;Katherine H. Roucoux;Althea L. Davies;Shuang Zhang;Chunqing Sun;Richard T. Streeter;William Hutchison;Ian T. Lawson - 通讯作者:
Ian T. Lawson
William Hutchison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Hutchison', 18)}}的其他基金
A new multi-parameter toolkit to interrogate the source and climate impact of past volcanism
一个新的多参数工具包,用于询问过去火山活动的来源和气候影响
- 批准号:
NE/S015345/1 - 财政年份:2019
- 资助金额:
$ 75.77万 - 项目类别:
Fellowship
Taking Earth's volcanic pulse: understanding global volcanic hazards by unlocking the ice core isotope archive
掌握地球火山脉搏:通过解锁冰芯同位素档案了解全球火山危害
- 批准号:
MR/S033505/1 - 财政年份:2019
- 资助金额:
$ 75.77万 - 项目类别:
Fellowship
相似国自然基金
火山活动的分子地球化学响应与有机质富集机制——以上寺剖面大隆组为例
- 批准号:42302189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
酸性火山灰富集型煤中镓-锂富集机制研究:原位微区地球化学和镓-锂同位素制约
- 批准号:42202197
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
岩浆演化过程中钙同位素地球化学行为:以藏东囊谦碱性火山岩为例
- 批准号:42203013
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
岩浆演化过程中钙同位素地球化学行为:以藏东囊谦碱性火山岩为例
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
酸性火山灰富集型煤中镓-锂富集机制研究:原位微区地球化学和镓-锂同位素制约
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mine to Magnets – Securing a Supply of Rare Earth Elements from Volcanic Tuffs for UK Magnet Manufacture
从矿山到磁铁 — 确保从火山凝灰岩中为英国磁铁制造商提供稀土元素
- 批准号:
10078460 - 财政年份:2023
- 资助金额:
$ 75.77万 - 项目类别:
Feasibility Studies
Assessing Atmospheric Impacts of the Hunga Tonga-Hunga Ha'apai Volcanic Eruption and Using It as a Natural Experiment to Evaluate an Earth System Model
评估洪加汤加-洪加哈派火山喷发的大气影响并将其用作评估地球系统模型的自然实验
- 批准号:
2302458 - 财政年份:2023
- 资助金额:
$ 75.77万 - 项目类别:
Standard Grant
Distinct responses of lung macrophages and airway epithelial cells to Hawai'i-derived volcanic ash and nontuberculous mycobacteria
肺巨噬细胞和气道上皮细胞对夏威夷火山灰和非结核分枝杆菌的独特反应
- 批准号:
10828133 - 财政年份:2023
- 资助金额:
$ 75.77万 - 项目类别:
Distinct responses of lung macrophages and airway epithelial cells to Hawai'i-derived volcanic ash and nontuberculous mycobacteria
肺巨噬细胞和气道上皮细胞对夏威夷火山灰和非结核分枝杆菌的独特反应
- 批准号:
10667753 - 财政年份:2023
- 资助金额:
$ 75.77万 - 项目类别:
初生マグマ生成条件の時間追跡から探る「火山活動の終わり方」
通过对原始岩浆形成条件的时间追踪来探索“火山活动如何结束”
- 批准号:
22K14117 - 财政年份:2022
- 资助金额:
$ 75.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists