Taking Earth's volcanic pulse: understanding global volcanic hazards by unlocking the ice core archive
掌握地球火山脉搏:通过解锁冰芯档案了解全球火山危害
基本信息
- 批准号:MR/X024016/1
- 负责人:
- 金额:$ 75.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
At the start of 2022, a little studied Pacific Island volcano, Hunga Tonga-Hunga Ha apai, erupted with an energy ~1000x greater than the atomic bomb dropped on Hiroshima. This eruption created waves that reverberated around the Earth and sent up a volcanic plume that reached ~55 km, half-way to space. Although this eruption was devastating for Tonga, mercifully, from a global perspective, it was short in duration and did not occur in a densely populated area or one of vital food production, transport, or energy transmission. Had it done so there would have been major impacts on climate and society.Volcanologists study past volcanic events so that we can understand their return periods and impacts and help prepare society for the next 'big one'. Large eruptions loft enormous quantities of ash and gas into the atmosphere, these plumes undergo regional and global distribution and can travel thousands of kilometres from their source. In most surface environments the fine-grained volcanic fallout is rapidly washed away. Ice sheets are the exception to this, and by drilling into the ice and extracting core scientists can identify the sulfur-rich layers and ash deposited by these past eruptions. Although ice cores provide the undisputed best archive of past volcanism, interpreting this record is not straightforward and our current techniques tell us little about where the source volcano was located and what its climate impact might have been. Even in records that span the last 2500 years, we only know the location of 7 of the 25 largest volcanic eruptions.This project will develop novel ice core chemical analyses to extract detailed information on the source, style, and environmental impacts of past volcanism. It will take advantage of two recent breakthroughs in ice core research. The first is high time resolution chemical analysis of volcanic sulfur which provide critical information about the height the volcanic plume reached in the atmosphere and the proximity of the eruptive source to the ice sheet. The second is ash particle chemistry which can help pinpoint the volcanic source and setting. During the first phase of this fellowship, we validated these techniques for well-known eruptions where we already have good information on the eruptive source, style and climatic impacts. We set up new protocols to analyse tiny fragments of ash (many of which are smaller in diameter than a human hair) and developed a computer model that can predict the sulfur chemistry for different eruption styles, allowing us to infer the source and climate impact directly from the ice core fingerprint.In the final phase of this project, we will apply our new techniques to unravel the source and climate impacts of the greatest eruptions in the ice core archive. Many of these are mystery eruptions, where we know there was a massive sulfur emission, but we don't yet know the exact volcanic source. Understanding the source of these massive mystery eruptions is one of the outstanding challenges in volcanology and paleoclimate, and our techniques will undoubtedly provide fascinating insights into these exceptional events and stimulate new interactions between volcanologists, climatologists, and historians.This project will provide critical new information about volcanism on Earth. To ensure maximum impact we will embed these findings in global volcanic hazard databases which will be used by scientists, governments, and industry (e.g., aviation and insurance) to quantify the magnitude, frequency and style of past eruptions and improve forecasts of future volcanic events. Our work will provide fundamental insights the climate impacts of past eruptions and will also help scientists and policy makers to target volcano monitoring in regions of the globe that are prone to large volcanic events. Ultimately, with this knowledge we will be better prepared for the next 'big one' and this will help limit the loss of life and reduce the economic losses.
2022年初,太平洋岛屿上一座研究较少的火山Hunga Tonga-Hunga Ha apai爆发,其能量比投在广岛的原子弹大1000倍。这次喷发产生的波浪在地球周围回荡,并发出了高达55公里的火山羽,到达太空的一半。虽然这次火山爆发对汤加来说是毁灭性的,但幸运的是,从全球角度来看,它持续时间很短,而且没有发生在人口稠密的地区,也没有发生在重要的粮食生产、运输或能源传输地区。火山学家研究过去的火山事件,以便我们能够了解它们的重现期和影响,并帮助社会为下一次“大事件”做好准备。大规模的火山喷发会将大量的火山灰和气体排放到大气中,这些羽流经过区域和全球分布,可以从源头传播数千公里。在大多数地表环境中,细粒的火山沉降物很快就被冲走了。冰盖是个例外,通过钻冰和提取核心,科学家可以识别富硫层和火山灰沉积这些过去的爆发。虽然冰芯提供了过去火山活动无可争议的最佳档案,但解释这些记录并不简单,我们目前的技术几乎没有告诉我们源火山的位置以及它可能对气候产生的影响。即使在过去2500年的记录中,我们也只知道25次最大火山爆发中的7次。本项目将开发新的冰芯化学分析,以提取有关过去火山活动的来源,风格和环境影响的详细信息。它将利用冰芯研究最近的两项突破。第一个是对火山硫进行高时间分辨率的化学分析,提供关于火山羽流在大气中达到的高度以及喷发源与冰盖的接近程度的关键信息。第二个是火山灰颗粒化学,它可以帮助确定火山的来源和环境。在该研究的第一阶段,我们验证了这些技术的知名喷发,我们已经有很好的信息,喷发源,风格和气候影响。我们建立了新的协议来分析火山灰的微小碎片(其中许多直径比一根人的头发还小),并开发出一种计算机模型,可以预测不同喷发风格的硫化学成分,使我们能够直接从冰芯指纹中推断出来源和气候影响,在这个项目的最后阶段,我们将运用我们的新技术来解开冰芯档案中最大喷发的来源和气候影响。其中许多是神秘的喷发,我们知道那里有大量的硫排放,但我们还不知道确切的火山源。了解这些巨大的神秘喷发的来源是火山学和古气候学的突出挑战之一,我们的技术无疑将为这些特殊事件提供迷人的见解,并激发火山学家,气候学家和历史学家之间的新互动。为了确保最大的影响,我们将把这些发现嵌入全球火山灾害数据库,供科学家、政府和工业界使用(例如,航空和保险)来量化过去火山喷发的规模、频率和风格,并改进对未来火山事件的预测。我们的工作将为过去火山爆发的气候影响提供基本见解,并将帮助科学家和政策制定者在地球仪上容易发生大规模火山事件的地区进行火山监测。最终,有了这些知识,我们将为下一次“大灾难”做好更好的准备,这将有助于限制生命损失并减少经济损失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Hutchison其他文献
Corrigendum to “New insights into the ∼ 74 ka Toba eruption from sulfur isotopes of polar ice cores” published in Clim. Past, 17, 2119–2137, 2021
对“来自极地冰芯硫同位素的~74 ka Toba喷发的新见解”的勘误发表于Clim Past,2119-2137,2021年。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
L. Crick;Andrea Burke;William Hutchison;Mika Kohno;3. KathrynA.Moore;4. JoelSavarino;E. Doyle;Sue Mahony;S. Kipfstuhl;J. Rae;1. RobertC.J.Steele;.. Stephen;. Sparks 6;Eric W. Wolff - 通讯作者:
Eric W. Wolff
Moths are less attracted to light traps than they used to be
与以前相比,飞蛾对光陷阱的吸引力减弱了
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.9
- 作者:
Ian Battles;Eric Burkness;Michael S. Crossley;Collin B. Edwards;Kristian Holmstrom;William Hutchison;J. Ingerson;David Owens;Avalon C.S. Owens - 通讯作者:
Avalon C.S. Owens
Isotopically heavy sulfur in nephelinite from Etinde, Cameroon Volcanic Line: Implications for the origin of intraplate magmatism
喀麦隆火山线埃廷德霞石岩中同位素重硫:对板内岩浆作用起源的启示
- DOI:
10.1016/j.chemgeo.2025.122748 - 发表时间:
2025-06-05 - 期刊:
- 影响因子:3.600
- 作者:
Sophie L. Baldwin;Linda A. Kirstein;J. Godfrey Fitton;Adrian J. Boyce;William Hutchison;Michael A.W. Marks;Eva E. Stüeken;Chris Hayward - 通讯作者:
Chris Hayward
Interrogating subcortical network effects of deep brain stimulation in the internal globus pallidus
探究苍白球内侧核深部脑刺激的皮层下网络效应
- DOI:
10.1016/j.brs.2024.12.482 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.400
- 作者:
David Crompton;Yijinmide Buren;William Hutchison;Milad Lankarany;Andres Lozano;Suneil Kalia;Luka Milosevic - 通讯作者:
Luka Milosevic
Ice core evidence for the Los Chocoyos supereruption disputes millennial-scale climate impact
洛斯乔科约斯超级火山喷发的冰芯证据对千年尺度气候影响存在争议
- DOI:
10.1038/s43247-025-02095-6 - 发表时间:
2025-02-22 - 期刊:
- 影响因子:8.900
- 作者:
Helen M. Innes;William Hutchison;Michael Sigl;Laura Crick;Peter M. Abbott;Matthias Bigler;Nathan J. Chellman;Siwan M. Davies;Steffen Kutterolf;Joseph R. McConnell;Mirko Severi;R. Stephen J. Sparks;Anders Svensson;Eric W. Wolff;James W. B. Rae;Andrea Burke - 通讯作者:
Andrea Burke
William Hutchison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Hutchison', 18)}}的其他基金
A new multi-parameter toolkit to interrogate the source and climate impact of past volcanism
一个新的多参数工具包,用于询问过去火山活动的来源和气候影响
- 批准号:
NE/S015345/1 - 财政年份:2019
- 资助金额:
$ 75.77万 - 项目类别:
Fellowship
Taking Earth's volcanic pulse: understanding global volcanic hazards by unlocking the ice core isotope archive
掌握地球火山脉搏:通过解锁冰芯同位素档案了解全球火山危害
- 批准号:
MR/S033505/1 - 财政年份:2019
- 资助金额:
$ 75.77万 - 项目类别:
Fellowship
相似国自然基金
基于Google Earth Engine云平台的遥感图像去云研究
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mine to Magnets – Securing a Supply of Rare Earth Elements from Volcanic Tuffs for UK Magnet Manufacture
从矿山到磁铁 — 确保从火山凝灰岩中为英国磁铁制造商提供稀土元素
- 批准号:
10078460 - 财政年份:2023
- 资助金额:
$ 75.77万 - 项目类别:
Feasibility Studies
Assessing Atmospheric Impacts of the Hunga Tonga-Hunga Ha'apai Volcanic Eruption and Using It as a Natural Experiment to Evaluate an Earth System Model
评估洪加汤加-洪加哈派火山喷发的大气影响并将其用作评估地球系统模型的自然实验
- 批准号:
2302458 - 财政年份:2023
- 资助金额:
$ 75.77万 - 项目类别:
Standard Grant
Unraveling the igneous and overprinting alteration histories of volcanic terrains on Earth and Mars
解开地球和火星火山地形的火成岩和叠印蚀变历史
- 批准号:
RGPIN-2016-03948 - 财政年份:2021
- 资助金额:
$ 75.77万 - 项目类别:
Discovery Grants Program - Individual
Origin of water in the Earth inferred from hydrogen isotope ratios of volcanic glass and melt inclusions
根据火山玻璃和熔体包裹体的氢同位素比推断地球水的来源
- 批准号:
21H01184 - 财政年份:2021
- 资助金额:
$ 75.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unraveling the igneous and overprinting alteration histories of volcanic terrains on Earth and Mars
解开地球和火星火山地形的火成岩和叠印蚀变历史
- 批准号:
RGPIN-2016-03948 - 财政年份:2020
- 资助金额:
$ 75.77万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Earth Science on Volcanic Islands
REU 网站:火山岛上的地球科学
- 批准号:
1950941 - 财政年份:2020
- 资助金额:
$ 75.77万 - 项目类别:
Standard Grant
Unraveling the igneous and overprinting alteration histories of volcanic terrains on Earth and Mars
解开地球和火星火山地形的火成岩和叠印蚀变历史
- 批准号:
RGPIN-2016-03948 - 财政年份:2019
- 资助金额:
$ 75.77万 - 项目类别:
Discovery Grants Program - Individual
Unraveling the igneous and overprinting alteration histories of volcanic terrains on Earth and Mars
解开地球和火星火山地形的火成岩和叠印蚀变历史
- 批准号:
RGPIN-2016-03948 - 财政年份:2018
- 资助金额:
$ 75.77万 - 项目类别:
Discovery Grants Program - Individual
Unraveling the igneous and overprinting alteration histories of volcanic terrains on Earth and Mars
解开地球和火星火山地形的火成岩和叠印蚀变历史
- 批准号:
RGPIN-2016-03948 - 财政年份:2017
- 资助金额:
$ 75.77万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Earth Science on Volcanic Islands
REU 网站:火山岛上的地球科学
- 批准号:
1560196 - 财政年份:2016
- 资助金额:
$ 75.77万 - 项目类别:
Continuing Grant














{{item.name}}会员




