Digital Hydraulic Fluid Power Technologies for Decarbonising Off-road Vehicles
用于越野车脱碳的数字液压流体动力技术
基本信息
- 批准号:MR/X034887/1
- 负责人:
- 金额:$ 203.08万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Climate change is the most pressing environmental challenge of our time. The transport sector was the largest contributor to UK greenhouse gas emissions (GHG) in 2020, with an overall contribution of 24% [1]. While decarbonisation of on-road transportation, such as cars, buses and trucks, is well underway by employing electric alternatives, the important sector of off-road vehicles is technologically far behind and represents a major contributor to GHG emissions. In 2018, the total GHGs emission of UK off-road vehicles was 11,043 kilotonnes [2], which is equivalent to the GHGs emission from 12.2 Giga pounds of coal burned, or the annual energy use of 1.4m homes' [3]. Hydraulic fluid power transmission is widely used in off-road vehicles, such as construction and agricultural machinery. Current state-of-the-art hydraulic fluid power components and control technologies continue to be highly energy- and cost-inefficient and generate significant CO2 emissions, as speed and force are controlled by using metering valves to throttle the flow and control the hydraulic pressure. This is a simple but extremely inefficient method because the energy is dissipated through an orifice and consequently lost as heat; it is common for more than 50% of the input power to be wasted in this way. A recent study showed that the average energy power efficiency of fluid power systems is only 21%, and a 5% improvement in efficiency can save 0.51 quadrillion Btu of energy, which relates to a saving of US$10.1 billion and a reduction in CO2 emissions of over 33.95 million tonnes. Therefore, there is an urgent need to create new technologies to significantly improve hydraulic energy efficiency to enable efficient decarbonisation and electrification of off-road vehicles and achieve Net Zero. To significantly improve hydraulic fluid power efficiency to over 90%, I will provide a transformative change in next-generation digital hydraulic components and control technologies by developing new additively manufactured high-performance digital hydraulic valves (WP1) and novel digital hydraulic converters (WP2) to reduce hydraulic pressure and energy losses. I will create high-fidelity analytical modelling tools to understand the underlying science of complex fluid power components and systems and establish new additive manufacturing-based designs and methodologies for energy-efficient digital valves and converters. An intelligent control platform (WP3) which will integrate model- and machine-learning-based control algorithms, will be developed to control the digital valves and converters to achieve their optimum performance and maximum efficiencies. These transformative and emerging technologies will be implemented on off-road vehicles (e.g. excavators, elevating platforms) as technology demonstrations and case studies (WP4) in order to produce future digital hydraulic fluid power products and solutions for Net Zero (WP5). I will conduct scoping studies in Phases 1 and 2 to define new research directions, deliver high-impact publications and conduct the pathways to impact activities.The research outcomes will generate significant academic, economic and societal impact. They will ensure the UK has a unique world-leading research activity in digital fluid power and its future applications. UK-based companies will receive a competitive advantage in exploiting the deliverables from the Fellowship and in significantly influencing the application potential of digital hydraulic fluid power in the market, which can have an immense range of customers. The research outcomes will provide long-term zero-carbon machines for people living and improving their quality of life.[1]. 2020 UK Greenhouse Gas Emissions, Final Figures. National Statistics. Department for Business, Energy & Industrial Strategy. 2022.[2]. National Atmospheric Emissions Inventory UK Data. 2022.[3]. Greenhouse Gas Equivalencies Calculator, the US Environmental Protection Agency. 2022.
气候变化是我们这个时代最紧迫的环境挑战。运输业是2020年英国温室气体排放的最大贡献者,总体贡献率为24%[1]。虽然汽车、公交车和卡车等道路交通工具的脱碳正在通过使用电动替代品顺利进行,但越野汽车的重要部门在技术上远远落后,是温室气体排放的主要贡献者。2018年,英国越野车的温室气体总排放量为11043千吨[2],相当于燃烧12.2千兆磅煤的温室气体排放量,或140万个家庭的年能源消耗量[3]。液压传动广泛应用于工程机械、农业机械等越野车中。目前最先进的液压流体动力元件和控制技术仍然是能源和成本低的,并产生大量的二氧化碳排放,因为速度和力是通过使用计量阀来控制流量和控制液压来控制的。这是一种简单但效率极低的方法,因为能量通过小孔消散,从而以热的形式损失;以这种方式浪费超过50%的输入功率是很常见的。最近的一项研究表明,流体动力系统的平均能源动力效率只有21%,效率每提高5%就可以节省0.51万亿Btu的能源,这涉及节省101亿美元和减少超过3395万吨的二氧化碳排放。因此,迫切需要创造新的技术来显著提高液压能源效率,以实现越野车辆的高效脱碳和电气化,并实现净零。为了将液压油动力效率显著提高到90%以上,我将通过开发新的附加制造的高性能数字液压阀(WP1)和新型数字液压转换器(WP2)来减少液压压力和能量损失,从而为下一代数字液压元件和控制技术带来革命性的变化。我将创建高保真的分析建模工具,以了解复杂流体动力部件和系统的基本科学,并为节能数字阀门和转换器建立基于加法制造的新设计和方法。将开发一个智能控制平台(WP3),它将集成基于模型和机器学习的控制算法,以控制数字阀和转换器,以实现其最佳性能和最大效率。这些变革性的新兴技术将作为技术示范和案例研究(WP4)应用于越野车(如挖掘机、升降平台),以生产未来的数字液压流体动力产品和Net Zero解决方案(WP5)。我将在第一和第二阶段进行范围划分研究,以确定新的研究方向,提供高影响力的出版物,并指导影响活动的途径。研究成果将产生重大的学术、经济和社会影响。他们将确保英国在数字流体动力及其未来应用方面拥有独特的世界领先的研究活动。总部位于英国的公司将在开发联谊会交付成果方面获得竞争优势,并显著影响数字液压传动在市场上的应用潜力,该市场可能拥有广泛的客户。研究成果将为人们生活和提高生活质量提供长期的零碳机器。2020年英国温室气体排放量,最终数字。国家统计局。商业、能源和工业战略系。2022年。[2]。英国国家大气排放清单数据。2022年。[3]。温室气体当量计算器,美国环境保护局。2022年
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Min Pan其他文献
Multi-Phase Clocking for Multi-Threaded Gate-Level-Pipelined Superconductive Logic
多线程门级流水线超导逻辑的多相时钟
- DOI:
10.1109/isvlsi54635.2022.00024 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xi Li;Min Pan;Tong Liu;P. Beerel - 通讯作者:
P. Beerel
Executive Stock Option Pricing and Incentives: Evidence from Asian Option Based on Volatility Estimated by SV-GED Model
高管股票期权定价和激励:来自基于 SV-GED 模型估计波动率的亚洲期权的证据
- DOI:
10.1109/icmss.2009.5302257 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Min Pan;Shengqiao Tang - 通讯作者:
Shengqiao Tang
Innovation knowledge management based on management accounting in ECEs
ECE中基于管理会计的创新知识管理
- DOI:
10.1109/kam.2010.5646308 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Rong Zeng;Min Pan - 通讯作者:
Min Pan
A Global Optimisation of a Switched Inertance Hydraulic System based on Genetic Algorithm
基于遗传算法的切换惯性液压系统全局优化
- DOI:
10.3384/ecp17144302 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Min Pan - 通讯作者:
Min Pan
An essential mycolate remodeling program for mycobacterial adaptation in host cells
宿主细胞中分枝杆菌适应的重要分枝杆菌重塑程序
- DOI:
10.1101/354431 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Eliza J. R. Peterson;Rebeca Bailo;A. Rothchild;Mario L. Arrieta;Amardeep Kaur;Min Pan;D. Mai;C. Cooper;A. Aderem;A. Bhatt;N. Baliga - 通讯作者:
N. Baliga
Min Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Min Pan', 18)}}的其他基金
Novel Integrated Control of Fluid-borne Noise in Fluid Power Systems
流体动力系统中流体噪声的新型集成控制
- 批准号:
EP/P022022/1 - 财政年份:2017
- 资助金额:
$ 203.08万 - 项目类别:
Research Grant
相似国自然基金
高速开关阀先导驱动的双阀芯液压阀控制关键技术研究
- 批准号:52005441
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
自由活塞斯特林直驱式柱塞液压动力装置结构原理与控制参量分析
- 批准号:51705061
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
阀控式阻尼可调液压减振器调节机理及动态温度补偿系统研究
- 批准号:51705084
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
剪切流动波涡耦合的液压阀流体自激振荡机理与控制方法的基础研究
- 批准号:51605333
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于热弹性流体动力学理论的液压变压器组合式配流盘摩擦副润滑特性研究
- 批准号:51605320
- 批准年份:2016
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
叶片式液压摆动油缸多弹性体混合密封的理论与实验研究
- 批准号:51375352
- 批准年份:2013
- 资助金额:79.0 万元
- 项目类别:面上项目
基于耳蜗基底膜仿生原理的液压系统流体脉动抑制方法研究
- 批准号:51275059
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
外力扰动液压岩石断裂研究
- 批准号:41172270
- 批准年份:2011
- 资助金额:72.0 万元
- 项目类别:面上项目
基于近场声全息技术的液压泵流体噪声与结构关联机制研究
- 批准号:51105338
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
复杂液压伺服控制系统工作流体流态虚拟监测及可视化
- 批准号:60970073
- 批准年份:2009
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
Unconventional Petroleum Reservoirs: fluid-rock interactions and induced seismicity during hydraulic fracturing and reservoir characterisation
非常规石油储层:水力压裂和储层表征过程中的流体-岩石相互作用和诱发地震活动
- 批准号:
RGPIN-2017-03788 - 财政年份:2021
- 资助金额:
$ 203.08万 - 项目类别:
Discovery Grants Program - Individual
Unconventional Petroleum Reservoirs: fluid-rock interactions and induced seismicity during hydraulic fracturing and reservoir characterisation
非常规石油储层:水力压裂和储层表征过程中的流体-岩石相互作用和诱发地震活动
- 批准号:
RGPIN-2017-03788 - 财政年份:2020
- 资助金额:
$ 203.08万 - 项目类别:
Discovery Grants Program - Individual
Unconventional Petroleum Reservoirs: fluid-rock interactions and induced seismicity during hydraulic fracturing and reservoir characterisation
非常规石油储层:水力压裂和储层表征过程中的流体-岩石相互作用和诱发地震活动
- 批准号:
RGPIN-2017-03788 - 财政年份:2019
- 资助金额:
$ 203.08万 - 项目类别:
Discovery Grants Program - Individual
Reducing the Environmental Impact of Hydraulic Fracturing by Improved Effectiveness of Pumped Fluid and Proppant
通过提高泵送流体和支撑剂的效率来减少水力压裂对环境的影响
- 批准号:
1934183 - 财政年份:2019
- 资助金额:
$ 203.08万 - 项目类别:
Standard Grant
EAGER: Assessment of Coupled Hydraulic Fracturing Fluid Mass Transfer and Biodegradation in Shallow Aquifer Systems
EAGER:浅层含水层系统中耦合水力压裂液传质和生物降解的评估
- 批准号:
1952439 - 财政年份:2019
- 资助金额:
$ 203.08万 - 项目类别:
Standard Grant
Simulation of Hydraulic Fracturing Fluid-Flow Dynamics Using High-Pressure Microfluidic Devices With Different Chemistries
使用不同化学成分的高压微流体装置模拟水力压裂流体流动动力学
- 批准号:
543521-2019 - 财政年份:2019
- 资助金额:
$ 203.08万 - 项目类别:
Collaborative Research and Development Grants
Creation of Functional Thermo-Fluid Control Device Based on Understanding of Thermo-Hydraulic Phenomena under Space Environment
基于对空间环境下热工水力现象的理解,创建功能性热流体控制装置
- 批准号:
18H01630 - 财政年份:2018
- 资助金额:
$ 203.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unconventional Petroleum Reservoirs: fluid-rock interactions and induced seismicity during hydraulic fracturing and reservoir characterisation
非常规石油储层:水力压裂和储层表征过程中的流体-岩石相互作用和诱发地震活动
- 批准号:
RGPIN-2017-03788 - 财政年份:2018
- 资助金额:
$ 203.08万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Assessment of Coupled Hydraulic Fracturing Fluid Mass Transfer and Biodegradation in Shallow Aquifer Systems
EAGER:浅层含水层系统中耦合水力压裂液传质和生物降解的评估
- 批准号:
1755719 - 财政年份:2018
- 资助金额:
$ 203.08万 - 项目类别:
Standard Grant
The effect of hydraulic fracturing fluid on aquatic species
水力压裂液对水生生物的影响
- 批准号:
502443-2017 - 财政年份:2018
- 资助金额:
$ 203.08万 - 项目类别:
Postdoctoral Fellowships