Novel Integrated Control of Fluid-borne Noise in Fluid Power Systems

流体动力系统中流体噪声的新型集成控制

基本信息

  • 批准号:
    EP/P022022/1
  • 负责人:
  • 金额:
    $ 12.88万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Hydraulic fluid power is widely used in land, sea and air transportation, construction machinery, industrial machinery, agricultural machinery, oil and gas, mining and defence. However hydraulic systems are inherently very noisy and new techniques for fluid-borne noise (FBN) attenuation are needed to achieve acceptable and safe noise levels as documented in The Health and Safety Executive 'The Control of Noise at Work Regulations 2005'. It is obvious that low-noise hydraulic machines can significantly improve people's working environment and quality of life.Hydraulic systems are often inefficient with an average efficiency of 21%. An average 5% improvement in efficiency can save 0.51 quadrillion Btu of energy and US$10.1 billion while reducing carbon dioxide emissions by more than 33.95 million metric tons, according to the recent study of 'Estimating the Impact (Energy, Emission and Economics) of the US Fluid Power Industry, 2011'. Some new techniques such as 'digital' fluid power promise much lower energy losses but are hampered by higher noise levels according to the findings from the recently completed research project (EPSRC grant EP/H024190/1). Effective noise control techniques should enable use of these more efficient hydraulic systems, resulting in considerable reduction in fuel consumption and carbon dioxide emissions.The noise in hydraulic circuits presents itself as FBN, structure borne noise and air borne noise. FBN is caused by the unsteady flow produced by pumps and motors or 'digital' hydraulics, and propagates through the system causing vibration or structure borne noise, which in turn causes air borne noise. Traditional noise control measures can lead to additional power losses. Unwanted noise also consumes energy and generates heat which may lead to machines instability and failures. In response to the engineering challenges in noise control and energy efficiency, this proposal is a timely investigation into a novel integrated noise attenuation system for hydraulic machines. The proposed research would be a world first, and will apply a newly integrated noise control approach engaging both active and passive control methods to obtain an effective, robust and high-bandwidth noise attenuation for fluid power systems. Uniquely, this new approach allows the dominant harmonic pressure pulsations to be attenuated by the active attenuator and high frequency noise to be cancelled by passive tuned flexible hoses without impairing the system dynamic response. This novel methodology can significantly improve the noise attenuation performance. Simulations of a generic integrated FBN control system studied by the PI show that 55dB attenuation was achieved, while 40dB was achieved by only using the active control method and 20dB was achieved by using the passive control approach, respectively.The research outcomes will deliver effective solutions to replace traditional noise control equipment and provide input into the development of quieter fluid power machines in the UK and worldwide. The experimental results will provide confidence in applying the integrated FBN control system and design methodology for both conventional and 'digital' hydraulic machines. This research will maintain my research group's unique world leading position and accelerate research impact to ensure the UK remains internationally competitive. This work will ensure the UK's significant role in the global market for hydraulic components which is projected to reach US$67.8 billion by 2020 and further enhance the UK's leading position in the European hydraulic market. It will also help ensure that the UK is well equipped to deal with noise challenges in hydraulic engineering and has the research capability and quantitative skills for worldwide environmental and energy challenges it may face in the future.
液压流体动力广泛应用于陆、海、空运输、工程机械、工业机械、农业机械、石油和天然气、采矿和国防。然而,液压系统固有地非常嘈杂,并且需要用于流体噪声(FBN)衰减的新技术来实现可接受的和安全的噪声水平,如健康和安全执行官“2005年工作噪声控制条例”中所记载的。显而易见,低噪音液压机可以显著改善人们的工作环境和生活质量,液压系统往往效率低下,平均效率为21%。根据最近一项名为“2011年美国流体动力行业影响(能源、排放和经济)评估”的研究,效率平均提高5%可以节省0.51千万亿Btu的能源和101亿美元,同时减少超过3395万公吨的二氧化碳排放。根据最近完成的研究项目(EPSRC资助EP/H 024190/1)的结果,一些新技术,如“数字”流体动力,有望降低能量损失,但受到较高噪声水平的阻碍。有效的噪声控制技术应使这些更有效的液压系统的使用,从而大大减少燃油消耗和二氧化碳排放。液压回路中的噪声表现为FBN,结构噪声和空气噪声。FBN是由泵和马达或“数字”液压产生的不稳定流动引起的,并通过系统传播,引起振动或结构噪声,这反过来又引起空气噪声。传统的噪音控制措施可能会导致额外的功率损失。不必要的噪音还会消耗能量并产生热量,从而可能导致机器不稳定和故障。为了应对噪声控制和能源效率方面的工程挑战,该建议是对液压机新型集成噪声衰减系统的及时调查。这项研究将是世界上第一次,并将采用一种新的集成噪声控制方法,采用主动和被动控制方法,为流体动力系统提供有效,鲁棒和高带宽的噪声衰减。独特的是,这种新方法允许主谐波压力脉动被主动衰减器衰减,高频噪声被被动调谐柔性软管消除,而不会损害系统的动态响应。这种新的方法可以显着提高噪声衰减性能。仿真结果表明,采用PI控制方法的FBN控制系统的衰减效果达到了55 dB,而仅采用主动控制方法的衰减效果为40 dB,采用被动控制方法的衰减效果为20 dB。研究成果将提供有效的解决方案,以取代传统的噪音控制设备,并为英国更安静的流体动力机械的开发提供投入,国际吧实验结果将提供信心,在传统的和“数字”液压机应用集成FBN控制系统和设计方法。这项研究将保持我的研究小组的独特的世界领先地位,并加快研究的影响,以确保英国保持国际竞争力。这项工作将确保英国在全球液压元件市场中发挥重要作用,预计到2020年将达到678亿美元,并进一步加强英国在欧洲液压市场的领先地位。它还将有助于确保英国有能力应对水利工程中的噪音挑战,并拥有应对未来可能面临的全球环境和能源挑战的研究能力和定量技能。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Review of Switched Inertance Hydraulic Converter Technology1
切换惯性液压转换器技术综述1
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System in a Four-Port High-Speed Switching Valve Configuration
  • DOI:
    10.3390/en10060780
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Min Pan;A. Plummer;Abdullah El Agha
  • 通讯作者:
    Min Pan;A. Plummer;Abdullah El Agha
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System in a Four-Port High-Speed Switching Valve Configuration  
四端口高速切换阀配置中切换惯性液压系统的理论与实验研究
  • DOI:
    10.20944/preprints201704.0177.v1
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pan M
  • 通讯作者:
    Pan M
Novel Integrated Control of Fluid-Borne Noise in Hydraulic Systems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Min Pan其他文献

Innovation knowledge management based on management accounting in ECEs
ECE中基于管理会计的创新知识管理
A Global Optimisation of a Switched Inertance Hydraulic System based on Genetic Algorithm
基于遗传算法的切换惯性液压系统全局优化
Executive Stock Option Pricing and Incentives: Evidence from Asian Option Based on Volatility Estimated by SV-GED Model
高管股票期权定价和激励:来自基于 SV-GED 模型估计波动率的亚洲期权的证据
Multi-Phase Clocking for Multi-Threaded Gate-Level-Pipelined Superconductive Logic
多线程门级流水线超导逻辑的多相时钟
An essential mycolate remodeling program for mycobacterial adaptation in host cells
宿主细胞中分枝杆菌适应的重要分枝杆菌重塑程序
  • DOI:
    10.1101/354431
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eliza J. R. Peterson;Rebeca Bailo;A. Rothchild;Mario L. Arrieta;Amardeep Kaur;Min Pan;D. Mai;C. Cooper;A. Aderem;A. Bhatt;N. Baliga
  • 通讯作者:
    N. Baliga

Min Pan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Min Pan', 18)}}的其他基金

Digital Hydraulic Fluid Power Technologies for Decarbonising Off-road Vehicles
用于越野车脱碳的数字液压流体动力技术
  • 批准号:
    MR/X034887/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Fellowship

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Standard Grant
EARLYWATER - An integrated early warning system to control emerging pollutants and pathogens in reclaimed water
EARLYWATER - 控制再生水中新出现的污染物和病原体的综合预警系统
  • 批准号:
    EP/X02380X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Fellowship
Integrated wind-wave control of semi-submersible floating offshore wind turbine platforms (FOWT-Control)
半潜式浮动海上风力发电机平台的综合风浪控制(FOWT-Control)
  • 批准号:
    EP/W009684/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Research Grant
Integrated wind-wave control of semi-submersible floating offshore wind turbine platforms (FOWT-Control)
半潜式浮动海上风力发电机平台的综合风浪控制(FOWT-Control)
  • 批准号:
    EP/W009854/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Research Grant
Smart, Aware, Integrated Wind Farm Control Interacting with Digital Twins (ICONIC)
与数字孪生交互的智能、感知、集成风电场控制 (ICONIC)
  • 批准号:
    10095874
  • 财政年份:
    2023
  • 资助金额:
    $ 12.88万
  • 项目类别:
    EU-Funded
Integrated Public Health and Academic Collaboration for Infectious Diseases Control (iPHAC-IDC): Implementation of One Health approaches to pandemic preparedness and adolescent HIV prevention
传染病控制综合公共卫生和学术合作 (iPHAC-IDC):实施“同一个健康”方法来预防大流行病和青少年艾滋病毒预防
  • 批准号:
    10807957
  • 财政年份:
    2023
  • 资助金额:
    $ 12.88万
  • 项目类别:
i-PREDICT: Integrated adaPtive pRocEss DesIgn and ConTrol
i-PREDICT:集成自适应过程设计和控制
  • 批准号:
    EP/W035006/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Research Grant
Integrated biological system design of catchment systems for non-point pollution control
面源污染控制集水系统综合生物系统设计
  • 批准号:
    2890110
  • 财政年份:
    2023
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Studentship
Integrated delivery of cancer control interventions for adolescents and young adults living with HIV in Zambia
为赞比亚艾滋病毒感染者提供综合癌症控制干预措施
  • 批准号:
    10878015
  • 财政年份:
    2023
  • 资助金额:
    $ 12.88万
  • 项目类别:
Integrated wind-wave control of semi-submersible floating offshore wind turbine platforms (FOWT-Control)
半潜式浮动海上风力发电机平台的综合风浪控制(FOWT-Control)
  • 批准号:
    EP/W009692/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了