ICF: Hollow-fiber bioreactor technology to explore mechanisms and delivery of cellular therapy during machine perfusion of donated human kidneys
ICF:中空纤维生物反应器技术,用于探索捐献人肾脏机器灌注过程中细胞治疗的机制和实施
基本信息
- 批准号:MR/Y000676/1
- 负责人:
- 金额:$ 35.64万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Kidneys have many functions, including cleaning the blood and removing waste. If the kidneys fail a kidney transplant is almost always the best treatment. Most kidney transplants in the UK come from deceased donors. The process of removing, transporting, and transplanting a kidney takes time and causes damage. Some kidneys which are working well in the potential organ donor cannot tolerate this damage, and therefore are not used for transplant. This lack of suitable kidneys leads to long waiting times for people with kidney failure. Some people who need a kidney transplant never get oneMany treatments have been tried to limit the damaging effects of removing, transporting, and transplanting these kidneys. One option involves a machine which pumps fluid around the kidney whilst it is outside of the body. This is called 'machine perfusion'. It allows the delivery of other treatments directly to a kidneyOur research group has shown that a cell therapy using Multipotent Adult Progenitor Cells or MAPC® cells can be delivered to a kidney during machine perfusion. The MAPC cells, taken from human bone marrow and grown in a laboratory, were delivered into the kidney through its artery. They appeared to improve the quality of the kidneys. However, there are two main barriers preventing us using these kidneys for transplant. Firstly, it is not well understood exactly how the MAPC cells work in this setting. Secondly, the best method for delivering the MAPC cells to the kidney is not known. This research project aims to remove those barriersTo achieve this aim, I will use a new method of delivering this cell treatment. Instead of putting the MAPC cells into the kidney, the MAPC cells will be maintained in a plastic container called a 'bioreactor'. I have spent 9 months finding the best conditions to grow MAPC cells in this bioreactor. I have also used fluid from previous kidney machine perfusions and shown that this 'activates' MAPC cells in the bioreactor, which will enable them to have an impact on the kidneyMoving this project forward will involve performing machine perfusion on pairs of human kidneys. These kidneys will have been donated, but then deemed unsuitable for transplantation. We can use this valuable gift in this approved research project where the next of kin gives consent. This set of kidneys will not be transplanted after our experimentsWe will include a bioreactor of MAPC cells as part of the machine perfusion device. The MAPC cells and the kidney can communicate, meaning the MAPC cells can treat the kidney. However, the MAPC cells and the kidney are in separate compartments. This gives the unique opportunity to study the interaction between the kidney and the MAPC cells in a controlled way. Importantly, we can see what effects the kidney has on the MAPC cells. Changing the properties of the bioreactor will allow me to modify how the two communicate and interactThis is a unique type of experiment. I hope that this will answer several important questions: How are MAPC cells activated? How do MAPC cells in a bioreactor affect a human kidney? How do they have this effect? What types of interaction are needed for them to have their effect? Answering these questions will bring us closer to transplanting kidneys using this treatment. This could increase the number of kidneys available for transplant, reducing waiting times, and giving hope to patients on the wait listThe potential implications of this research are also more wide reaching. The processes which injure donated organs also happen in common health problems like heart attacks and strokes. For example, there are currently clinical trials looking at MAPC cells as a treatment for strokes. New insights into how these cell therapies are activated, how they have their effect, and how they can be delivered could be applicable in a wide range of settings. Findings from this project could therefore lead to improved treatments for a much wider range of diseases
肾脏有许多功能,包括清洁血液和清除废物。如果肾脏衰竭,肾移植几乎总是最好的治疗方法。英国的大多数肾脏移植来自已故捐赠者。移除、运输和移植肾脏的过程需要时间,并会造成损害。一些在潜在器官捐献者体内工作良好的肾脏不能耐受这种损伤,因此不能用于移植。这种缺乏合适的肾脏导致肾衰竭患者等待时间长。一些需要肾移植的人从未得到一个许多治疗方法已被尝试,以限制切除,运输和移植这些肾脏的破坏性影响。一种选择是使用一种机器,当肾脏在体外时,它会将液体泵入肾脏周围。这被称为“机器灌注”。我们的研究小组已经证明,使用多能成体祖细胞或MAPC®细胞的细胞疗法可以在机器灌注期间被递送到肾脏。MAPC细胞取自人类骨髓,在实验室中生长,通过动脉输送到肾脏。它们似乎改善了肾脏的质量。然而,有两个主要障碍阻止我们使用这些肾脏进行移植。首先,还没有很好地理解MAPC细胞在这种情况下如何工作。其次,将MAPC细胞递送至肾脏的最佳方法尚不清楚。本研究项目旨在消除这些障碍为了实现这一目标,我将使用一种新的方法来提供这种细胞治疗。MAPC细胞将被保存在一个称为“生物反应器”的塑料容器中,而不是将MAPC细胞放入肾脏中。我花了9个月的时间找到了在这个生物反应器中培养MAPC细胞的最佳条件。我还使用了以前肾脏机器灌注的液体,并表明这“激活”了生物反应器中的MAPC细胞,这将使它们能够对肾脏产生影响。这些肾脏将被捐赠,但随后被认为不适合移植。我们可以用这个宝贵的礼物在这个批准的研究项目,其中近亲同意。这组肾脏在我们的实验后将不会被移植。我们将包括一个MAPC细胞生物反应器作为机器灌注装置的一部分。MAPC细胞和肾脏可以沟通,这意味着MAPC细胞可以治疗肾脏。然而,MAPC细胞和肾脏位于不同的隔室中。这为以受控方式研究肾脏和MAPC细胞之间的相互作用提供了独特的机会。重要的是,我们可以看到肾脏对MAPC细胞的影响。改变生物反应器的特性将允许我修改两者的通信和相互作用方式。这是一种独特的实验类型。我希望这将回答几个重要的问题:MAPC细胞是如何激活的?生物反应器中的MAPC细胞如何影响人类肾脏?它们是如何产生这种效果的?它们需要什么样的互动才能发挥作用?解决这些问题将使我们更接近使用这种治疗方法移植肾脏。这可能会增加可供移植的肾脏数量,减少等待时间,并给等待名单上的患者带来希望。这项研究的潜在影响也更广泛。损害捐赠器官的过程也发生在常见的健康问题中,如心脏病发作和中风。例如,目前有临床试验将MAPC细胞作为中风的治疗方法。关于这些细胞疗法如何被激活,它们如何产生效果以及它们如何被递送的新见解可能适用于广泛的环境。因此,该项目的发现可能会导致更广泛疾病的治疗方法得到改善
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Tingle其他文献
Samuel Tingle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
双活性位点耦合的M@[Hollow-Cu/ZSM-5]中空分子筛催化剂构筑
及其降解胺类有机废气的研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Fabrication of omniphobic PVDF hollow fiber membrane with hierarchical structure via co-extrusion technology for anti-wetting and anti-fouling membrane distillation
共挤技术制备多级结构全疏PVDF中空纤维膜用于防润湿防污膜蒸馏
- 批准号:
23K19184 - 财政年份:2023
- 资助金额:
$ 35.64万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Hollow Fiber Coupler for Hydrogen Sulfide Spectral Analysis
用于硫化氢光谱分析的中空光纤耦合器
- 批准号:
571684-2021 - 财政年份:2022
- 资助金额:
$ 35.64万 - 项目类别:
Alliance Grants
CAREER: A New Paradigm for Creating Silica Membranes from Polymer Hollow Fiber Templates
职业生涯:从聚合物中空纤维模板创建二氧化硅膜的新范例
- 批准号:
2044794 - 财政年份:2021
- 资助金额:
$ 35.64万 - 项目类别:
Continuing Grant
Hollow core fiber compression scheme for high-average/peak-power ytterbium laser technology and its application to secondary sources of long-wavelength radiation
高平均/峰值功率镱激光技术的空心光纤压缩方案及其在长波长辐射二次源中的应用
- 批准号:
529329-2018 - 财政年份:2020
- 资助金额:
$ 35.64万 - 项目类别:
Collaborative Research and Development Grants
Non-breakable bioadaptive infrared hollow fiber for endoscope surgery
用于内窥镜手术的不易破损的生物适应性红外中空纤维
- 批准号:
19K12833 - 财政年份:2019
- 资助金额:
$ 35.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Electrically Conductive Hollow Fiber Membranes
导电中空纤维膜的研制
- 批准号:
542295-2019 - 财政年份:2019
- 资助金额:
$ 35.64万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Innovative Strategies for Scalable Mixed-Matrix Hollow Fiber Membranes with Sub-micron thick Molecular-Sieve-Containing Composite Skin Layers for Tailorable Gas Separations
用于可定制气体分离的具有亚微米厚含分子筛复合表层的可扩展混合基质中空纤维膜的创新策略
- 批准号:
1929596 - 财政年份:2019
- 资助金额:
$ 35.64万 - 项目类别:
Standard Grant
CAREER: Catalytic Hollow-Fiber Membranes as an Efficient and Scalable Process in Water Treatment
职业:催化中空纤维膜作为水处理中的一种高效且可扩展的工艺
- 批准号:
1847466 - 财政年份:2019
- 资助金额:
$ 35.64万 - 项目类别:
Continuing Grant
Hollow core fiber compression scheme for high-average/peak-power ytterbium laser technology and its application to secondary sources of long-wavelength radiation
高平均/峰值功率镱激光技术的空心光纤压缩方案及其在长波长辐射二次源中的应用
- 批准号:
529329-2018 - 财政年份:2019
- 资助金额:
$ 35.64万 - 项目类别:
Collaborative Research and Development Grants
Hollow core fiber compression scheme for high-average/peak-power ytterbium laser technology and its application to secondary sources of long-wavelength radiation
高平均/峰值功率镱激光技术的空心光纤压缩方案及其在长波长辐射二次源中的应用
- 批准号:
529329-2018 - 财政年份:2018
- 资助金额:
$ 35.64万 - 项目类别:
Collaborative Research and Development Grants