Regulation and resilience of the neuronal microtubule cytoskeleton in health and disease
健康和疾病中神经元微管细胞骨架的调节和恢复能力
基本信息
- 批准号:MR/Y000633/1
- 负责人:
- 金额:$ 207.46万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our brains are built from billions of specialised cells called neurons. The many complex tasks that our brains perform, including thought and memory, occur because neurons make connections with each other that allow them to communicate. Early in brain development, immature neurons are not connected to each other and must navigate to exactly the right position to correctly integrate into the brain's communication network. Healthy brain function throughout our lives depends on the connections between our neurons being well maintained. Severe human diseases can occur if neuron connectivity and operation breaks down at any stage. Inaccurate neuron movement during brain development can cause intellectual disability, epilepsy and early death. Incomplete maintenance of neuronal function as our brains mature into adulthood can also cause neuropsychiatric illnesses including schizophrenia. Breakdown of neuronal function as we age can cause neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). In all these disease scenarios, there remains much to learn, and work in my lab is seeking to understand the machinery that supports neuronal health during development and as we mature.In the same way as our body has a skeleton that provides us with support and strength, neurons have a skeleton - called the cytoskeleton - which also gives them support and strength. The cytoskeleton is involved in many important aspects of neuronal life, and is part of the machinery that drives neuron movement during development, along with maintenance of connectivity and communication in mature neurons. Breakdown or disruption of the neuronal cytoskeleton is associated with developmental syndromes, neurodegenerative diseases and neuropsychiatric illnesses. Studying the cytoskeleton machinery is important so we can understand both how healthy neurons operate and how machinery malfunction causes disease.This project will focus on a part of the cytoskeleton called microtubules. These are long cylindrical structures that act like scaffolding inside the neuron and also act as tracks along which molecular transport motors carry cargo within the neuron. The organisation and stability of the microtubule machinery, together with the particular type of cargo that is carried along it, defines how the neuron functions. We would like to understand how the neuronal microtubules are assembled and maintained to help neurons undertake their many complex tasks within the brain. My research team studies the three-dimensional structure of microtubules, because knowing what they look like can help us understand how they work. We use a very powerful microscope called an electron microscope to take pictures of individual microtubules that have either been assembled in a test tube or form within a living neuron. We then use computers to combine these electron microscope pictures to calculate the microtubules' three-dimensional shape. By using information from patients with diseases that disrupt the microtubule machinery, we will be able to map disease-causing defects to particular machinery components.In the future, knowledge arising from our work may allow us to target and repair the broken parts of the cytoskeleton machinery in diseased or damaged neurons. Such understanding could also shed light on new treatments for dementia, stroke and physical injury.
我们的大脑是由数十亿个被称为神经元的特殊细胞组成的。我们的大脑执行许多复杂的任务,包括思维和记忆,这是因为神经元之间建立了联系,使它们能够进行交流。在大脑发育的早期,未成熟的神经元并不相互连接,必须准确地导航到正确的位置才能正确地融入大脑的通信网络。在我们的一生中,健康的大脑功能取决于我们神经元之间的连接得到很好的维护。如果神经元连接和运作在任何阶段发生故障,就可能发生严重的人类疾病。大脑发育过程中神经元运动不准确会导致智力残疾、癫痫和过早死亡。当我们的大脑成熟到成年期时,神经功能的不完全维持也会导致包括精神分裂症在内的神经精神疾病。随着我们年龄的增长,神经元功能的崩溃会导致神经退行性疾病,如肌萎缩侧索硬化症(ALS)。在所有这些疾病的情况下,还有很多东西需要学习,我的实验室正在努力了解在发育过程中和我们成熟时支持神经元健康的机制。就像我们的身体有一个骨架为我们提供支持和力量一样,神经元也有一个骨架--称为细胞骨架--它也给它们提供支持和力量。细胞骨架参与神经元生命的许多重要方面,是在发育过程中驱动神经元运动以及维持成熟神经元的连接和通信的机械的一部分。神经元细胞骨架的破坏或破坏与发育综合征、神经退行性疾病和神经精神疾病有关。研究细胞骨架机制很重要,这样我们就可以了解健康的神经元是如何运作的,以及机械故障是如何导致疾病的。这个项目将专注于细胞骨架的一部分,称为微管。这些长长的圆柱形结构在神经元内充当脚手架,也充当分子运输马达在神经元内运送货物的轨道。微管机械的组织和稳定性,以及它所携带的特定类型的货物,决定了神经元的功能。我们想了解神经元微管是如何组装和维持的,以帮助神经元承担大脑中的许多复杂任务。我的研究团队研究微管的三维结构,因为了解它们的样子可以帮助我们了解它们是如何工作的。我们使用一种名为电子显微镜的非常强大的显微镜来拍摄单个微管的照片,这些微管要么组装在试管中,要么在活的神经元中形成。然后,我们使用计算机将这些电子显微镜图像组合在一起,计算出微管的三维形状。通过使用来自扰乱微管机械的疾病患者的信息,我们将能够将致病缺陷映射到特定的机械部件。在未来,我们工作中产生的知识可能使我们能够针对并修复患病或受损神经元中细胞骨架机械的损坏部分。这样的理解也可能为痴呆症、中风和身体损伤的新治疗方法提供帮助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn Moores其他文献
The Molecular Mechanism of the Multi-Tasking Kinesin-8 Motor
- DOI:
10.1016/j.bpj.2009.12.896 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Carsten Peters;Katjuša Brejc;Lisa Belmont;Andrew Bodey;Yan Lee;Ming Yu;Shyam Ramchandani;Jun Guo;Serge Lichtsteiner;Kenneth Wood;Roman Sakowicz;Jim Hartman;Carolyn Moores - 通讯作者:
Carolyn Moores
The ATP State of a Mitotic Kinesin-5 Bound to Microtubules
- DOI:
10.1016/j.bpj.2008.12.1892 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Andrew Bodey;Masahide Kikkawa;Carolyn Moores - 通讯作者:
Carolyn Moores
Small Loops Make a Big Difference: Insight into the Molecular Mechanism of the Multi-Tasking Kinesin-8 Motor
- DOI:
10.1016/j.bpj.2010.11.067 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Carolyn Moores;Carsten Peters;Katjusa Brejc;Lisa Belmont;Andrew Bodey;Yan Lee;Ming Yu;Jun Guo;Roman Sakowicz;James Hartman - 通讯作者:
James Hartman
Structural Model for Preferential Microtubule Minus End Binding by CAMSAP CKK Domains
- DOI:
10.1016/j.bpj.2017.11.2773 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Joseph Atherton;Kai Jiang;Marcel Stangier;Yanzhang Luo;Shasha Hua;Klaartje Houben;Guido Scarabelli;Agnel Joseph;Anthony Roberts;Barry Grant;Maya Topf;Michel Steinmetz;Marc Baldus;Anna Akhmanova;Carolyn Moores - 通讯作者:
Carolyn Moores
Carolyn Moores的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carolyn Moores', 18)}}的其他基金
Cellular machinery in situ by correlative microscopy
通过相关显微镜观察原位细胞机械
- 批准号:
MR/X013359/1 - 财政年份:2022
- 资助金额:
$ 207.46万 - 项目类别:
Research Grant
Molecular and cellular dissection of kinesin motors in Apicomplexa to reveal roles in parasite proliferation
顶端复合体中驱动蛋白马达的分子和细胞解剖揭示了寄生虫增殖中的作用
- 批准号:
BB/N018176/1 - 财政年份:2017
- 资助金额:
$ 207.46万 - 项目类别:
Research Grant
Building blocks of molecular complexity: the neuronal cytoskeleton in health and disease
分子复杂性的组成部分:健康和疾病中的神经元细胞骨架
- 批准号:
MR/R000352/1 - 财政年份:2017
- 资助金额:
$ 207.46万 - 项目类别:
Research Grant
3d ultrastructural analysis of the subcellular organisation of inner hair cells and of their innervation during ageing.
内毛细胞的亚细胞组织及其衰老过程中的神经支配的 3D 超微结构分析。
- 批准号:
BB/M006476/1 - 财政年份:2015
- 资助金额:
$ 207.46万 - 项目类别:
Research Grant
Molecular mechanisms of kinesin-5s in fungal mitosis
驱动蛋白-5s在真菌有丝分裂中的分子机制
- 批准号:
BB/L00190X/1 - 财政年份:2014
- 资助金额:
$ 207.46万 - 项目类别:
Research Grant
Molecular reconstitution of cellular machinery essential for neuronal development
神经元发育所必需的细胞机器的分子重建
- 批准号:
MR/J000973/1 - 财政年份:2012
- 资助金额:
$ 207.46万 - 项目类别:
Research Grant
Elucidating the on/off switch for an essential mitotic motor
阐明重要的有丝分裂马达的开关
- 批准号:
BB/H005137/1 - 财政年份:2010
- 资助金额:
$ 207.46万 - 项目类别:
Research Grant
Elucidating the mechanism of microtubule depolymerisation by Kip3D kinesin
阐明 Kip3D 驱动蛋白微管解聚机制
- 批准号:
BB/D008921/1 - 财政年份:2006
- 资助金额:
$ 207.46万 - 项目类别:
Research Grant
相似海外基金
Novel mechanisms of epigenetic regulation in stress and depression: toward a precision medicine model
压力和抑郁症表观遗传调控的新机制:走向精准医学模型
- 批准号:
10437038 - 财政年份:2021
- 资助金额:
$ 207.46万 - 项目类别:
Novel mechanisms of epigenetic regulation in stress and depression: toward a precision medicine model
压力和抑郁症表观遗传调控的新机制:走向精准医学模型
- 批准号:
10401550 - 财政年份:2021
- 资助金额:
$ 207.46万 - 项目类别:
Neurotrophin-dependent regulation of voltage-gated sodium channels
电压门控钠通道的神经营养蛋白依赖性调节
- 批准号:
10443551 - 财政年份:2020
- 资助金额:
$ 207.46万 - 项目类别:
Neurotrophin-dependent regulation of voltage-gated sodium channels
电压门控钠通道的神经营养蛋白依赖性调节
- 批准号:
10615846 - 财政年份:2020
- 资助金额:
$ 207.46万 - 项目类别:
Neurotrophin-dependent regulation of voltage-gated sodium channels
电压门控钠通道的神经营养蛋白依赖性调节
- 批准号:
10183336 - 财政年份:2020
- 资助金额:
$ 207.46万 - 项目类别:
Excitatory and Metabotopic Regulation of PKA in Stress and Resilience
PKA 在压力和恢复力中的兴奋性和代谢调节
- 批准号:
10172980 - 财政年份:2019
- 资助金额:
$ 207.46万 - 项目类别:
Excitatory and Metabotopic Regulation of PKA in Stress and Resilience
PKA 在压力和恢复力中的兴奋性和代谢调节
- 批准号:
10397651 - 财政年份:2019
- 资助金额:
$ 207.46万 - 项目类别:
Steroid Hormone Regulation of Brain Plasticity and Vocal Behavior
类固醇激素对大脑可塑性和声音行为的调节
- 批准号:
10350677 - 财政年份:2018
- 资助金额:
$ 207.46万 - 项目类别:
Steroid Hormone Regulation of Brain Plasticity and Vocal Behavior
类固醇激素对大脑可塑性和声音行为的调节
- 批准号:
9886292 - 财政年份:2018
- 资助金额:
$ 207.46万 - 项目类别:
Regulation Of Mood By Dopamine D1 Receptors On Cerebral Cortical Interneurons
大脑皮层中间神经元多巴胺 D1 受体对情绪的调节
- 批准号:
9752659 - 财政年份:2018
- 资助金额:
$ 207.46万 - 项目类别: