Molecular mechanisms of kinesin-5s in fungal mitosis
驱动蛋白-5s在真菌有丝分裂中的分子机制
基本信息
- 批准号:BB/L00190X/1
- 负责人:
- 金额:$ 44.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research is to discover how cell replication is controlled and how it might be blocked. We will focus our studies on cell replication in fungi, both because they are excellent and well-established model organisms for studying replication, and because fungal diseases are medically, environmentally and economically important. In particular, we want to investigate the cell replication machinery in a fungus that infects corn and causes the disease corn smut. This crop disease poses a major threat to global food security, particularly because of the emergence of resistance to currently available fungicides. By understanding how the corn smut fungus replicates, we hope to first, provide general insight into the mechanisms of cell replication. Secondly, we hope to uncover unique features of fungus-specific cell replication because this knowledge promises to help in the development of novel fungicides.In the same way as our bodies have a skeleton that provides us with support and strength, the cells of fungi have a skeleton - called the cytoskeleton - which also provides support and structure. The cytoskeleton is involved in many important aspects of the life of fungi, including cellular transport, architecture and replication. Studying the cytoskeleton is important both so we can understand how healthy cells work, but also so we can specifically target the cytoskeleton of pathogenic organisms with drugs that kill these organisms and prevent disease.In particular, this project will focus on a part of the cytoskeleton called microtubules. These are long cylindrical structures that act like tracks along which molecular transport motors carry cellular cargo. The motors that we will study are called kinesins and there are many different types. In this project, we will be studying a kinesin type-5, which is important for accurate cell replication. We want to know how fungal kinesin-5s use cellular fuel to move along microtubules during replication and how this activity might be blocked. The work by the Birkbeck research team will involve studying the three-dimensional structure of the cytoskeleton, because knowing what the cytoskeleton looks like will contribute to our understanding of how it works in the fungus itself. We will use a very powerful microscope - an electron microscope - to take pictures of individual cytoskeleton molecules and then use computational analysis to combine these pictures and calculate their three-dimensional shape. A powerful aspect of the proposed project is that we will also study the function of kinesin-5 in live corn smut fungus, in collaboration with experts in fungal cell biology at the University of Exeter. Unlike many other fungi, which are very small, the cells of the corn smut fungus are relatively large (10um). This means that cell replication of individual cells can be studied in detail using light microscopy, so that our collaborators will be able to visualise the activity of kinesin-5s in the living fungus and examine the effects of blocking its activity on fungal survival.Initial analysis suggests that the kinesin-5s from fungi are different from kinesin-5s from other organisms, including humans. This means that we might be able to find drugs that can block fungal kinesin-5 and not human kinesin-5, and such drugs could be very promising for development as new fungicides. Studying the structure and function of the fungal kinesin-5s will allow us to investigate this idea.
这项研究的目的是发现细胞复制是如何被控制以及如何被阻止的。我们将把研究重点放在真菌中的细胞复制上,因为它们是研究复制的优秀且成熟的模型生物,而且因为真菌疾病在医学、环境和经济上都很重要。特别是,我们想研究感染玉米并引起玉米黑穗病的真菌的细胞复制机制。这种作物病害对全球粮食安全构成重大威胁,特别是因为对现有杀菌剂产生了抗药性。通过了解玉米黑穗病真菌如何复制,我们希望首先提供对细胞复制机制的一般见解。其次,我们希望揭示真菌特异性细胞复制的独特特征,因为这些知识有望有助于新型杀菌剂的开发。就像我们的身体有一个为我们提供支持和力量的骨架一样,真菌细胞也有一个骨架——称为细胞骨架——它也提供支持和结构。细胞骨架参与真菌生命的许多重要方面,包括细胞运输、结构和复制。研究细胞骨架非常重要,不仅可以让我们了解健康细胞的工作原理,还可以让我们用药物专门针对病原生物的细胞骨架,杀死这些生物并预防疾病。特别是,该项目将重点关注细胞骨架中称为微管的部分。这些是长圆柱形结构,就像分子运输马达携带细胞货物的轨道一样。我们将研究的马达称为驱动蛋白,有许多不同的类型。在这个项目中,我们将研究 5 型驱动蛋白,它对于细胞的精确复制非常重要。我们想知道真菌驱动蛋白 5 在复制过程中如何利用细胞燃料沿着微管移动,以及如何阻止这种活动。伯克贝克研究小组的工作将涉及研究细胞骨架的三维结构,因为了解细胞骨架的样子将有助于我们了解它在真菌本身中的运作方式。我们将使用非常强大的显微镜(电子显微镜)拍摄单个细胞骨架分子的照片,然后使用计算分析将这些照片组合起来并计算它们的三维形状。该项目的一个重要方面是,我们还将与埃克塞特大学真菌细胞生物学专家合作,研究活玉米黑穗病真菌中驱动蛋白-5 的功能。与许多其他非常小的真菌不同,玉米黑穗病真菌的细胞相对较大(10微米)。这意味着可以使用光学显微镜详细研究单个细胞的细胞复制,以便我们的合作者能够可视化活真菌中的 kinesin-5s 活性,并检查阻断其活性对真菌存活的影响。初步分析表明,来自真菌的 kinesin-5s 与来自其他生物体(包括人类)的 kinesin-5s 不同。这意味着我们或许能够找到能够阻断真菌驱动蛋白-5而不是人类驱动蛋白-5的药物,并且此类药物作为新型杀菌剂的开发前景非常广阔。研究真菌驱动蛋白 5 的结构和功能将使我们能够研究这个想法。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cryo-EM of human Arp2/3 complexes provides structural insights into actin nucleation modulation by ARPC5 isoforms.
人类 Arp2/3 复合物的冷冻电镜提供了对 ARPC5 同工型肌动蛋白成核调节的结构见解。
- DOI:10.1242/bio.054304
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Von Loeffelholz O
- 通讯作者:Von Loeffelholz O
Nucleotide- and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics.
- DOI:10.1038/s41467-017-02241-5
- 发表时间:2017-12-13
- 期刊:
- 影响因子:16.6
- 作者:von Loeffelholz O;Venables NA;Drummond DR;Katsuki M;Cross R;Moores CA
- 通讯作者:Moores CA
Cryo-EM of human Arp2/3 complexes provides structural insights into actin nucleation modulation by ARPC5 isoforms
人类 Arp2/3 复合物的冷冻电镜为 ARPC5 异构体对肌动蛋白成核的调节提供了结构见解
- DOI:10.1101/2020.05.01.071704
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Von Loeffelholz O
- 通讯作者:Von Loeffelholz O
Corrigendum to "Cryo-EM Structure (4.5 Å) of Yeast Kinesin-5-Microtubule Complex Reveals a Distinct Binding Footprint and Mechanism of Drug Resistance" [J. Mol. Biol. 431 (2019) 864-872] https://doi.org/10.1016/j.jmb.2019.01.011.
“酵母驱动蛋白-5-微管复合物的冷冻电镜结构 (4.5 ×) 揭示了独特的结合足迹和耐药机制”的勘误 [J.
- DOI:10.1016/j.jmb.2019.08.015
- 发表时间:2020
- 期刊:
- 影响因子:5.6
- 作者:Von Loeffelholz O
- 通讯作者:Von Loeffelholz O
Near-atomic cryo-EM structure of yeast kinesin-5-microtubule complex reveals a distinct binding footprint
酵母驱动蛋白-5-微管复合物的近原子冷冻电镜结构揭示了独特的结合足迹
- DOI:10.1101/302455
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Von Loeffelholz O
- 通讯作者:Von Loeffelholz O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn Moores其他文献
The Molecular Mechanism of the Multi-Tasking Kinesin-8 Motor
- DOI:
10.1016/j.bpj.2009.12.896 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Carsten Peters;Katjuša Brejc;Lisa Belmont;Andrew Bodey;Yan Lee;Ming Yu;Shyam Ramchandani;Jun Guo;Serge Lichtsteiner;Kenneth Wood;Roman Sakowicz;Jim Hartman;Carolyn Moores - 通讯作者:
Carolyn Moores
The ATP State of a Mitotic Kinesin-5 Bound to Microtubules
- DOI:
10.1016/j.bpj.2008.12.1892 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Andrew Bodey;Masahide Kikkawa;Carolyn Moores - 通讯作者:
Carolyn Moores
Small Loops Make a Big Difference: Insight into the Molecular Mechanism of the Multi-Tasking Kinesin-8 Motor
- DOI:
10.1016/j.bpj.2010.11.067 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Carolyn Moores;Carsten Peters;Katjusa Brejc;Lisa Belmont;Andrew Bodey;Yan Lee;Ming Yu;Jun Guo;Roman Sakowicz;James Hartman - 通讯作者:
James Hartman
Structural Model for Preferential Microtubule Minus End Binding by CAMSAP CKK Domains
- DOI:
10.1016/j.bpj.2017.11.2773 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Joseph Atherton;Kai Jiang;Marcel Stangier;Yanzhang Luo;Shasha Hua;Klaartje Houben;Guido Scarabelli;Agnel Joseph;Anthony Roberts;Barry Grant;Maya Topf;Michel Steinmetz;Marc Baldus;Anna Akhmanova;Carolyn Moores - 通讯作者:
Carolyn Moores
Carolyn Moores的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carolyn Moores', 18)}}的其他基金
Regulation and resilience of the neuronal microtubule cytoskeleton in health and disease
健康和疾病中神经元微管细胞骨架的调节和恢复能力
- 批准号:
MR/Y000633/1 - 财政年份:2023
- 资助金额:
$ 44.76万 - 项目类别:
Research Grant
Cellular machinery in situ by correlative microscopy
通过相关显微镜观察原位细胞机械
- 批准号:
MR/X013359/1 - 财政年份:2022
- 资助金额:
$ 44.76万 - 项目类别:
Research Grant
Molecular and cellular dissection of kinesin motors in Apicomplexa to reveal roles in parasite proliferation
顶端复合体中驱动蛋白马达的分子和细胞解剖揭示了寄生虫增殖中的作用
- 批准号:
BB/N018176/1 - 财政年份:2017
- 资助金额:
$ 44.76万 - 项目类别:
Research Grant
Building blocks of molecular complexity: the neuronal cytoskeleton in health and disease
分子复杂性的组成部分:健康和疾病中的神经元细胞骨架
- 批准号:
MR/R000352/1 - 财政年份:2017
- 资助金额:
$ 44.76万 - 项目类别:
Research Grant
3d ultrastructural analysis of the subcellular organisation of inner hair cells and of their innervation during ageing.
内毛细胞的亚细胞组织及其衰老过程中的神经支配的 3D 超微结构分析。
- 批准号:
BB/M006476/1 - 财政年份:2015
- 资助金额:
$ 44.76万 - 项目类别:
Research Grant
Molecular reconstitution of cellular machinery essential for neuronal development
神经元发育所必需的细胞机器的分子重建
- 批准号:
MR/J000973/1 - 财政年份:2012
- 资助金额:
$ 44.76万 - 项目类别:
Research Grant
Elucidating the on/off switch for an essential mitotic motor
阐明重要的有丝分裂马达的开关
- 批准号:
BB/H005137/1 - 财政年份:2010
- 资助金额:
$ 44.76万 - 项目类别:
Research Grant
Elucidating the mechanism of microtubule depolymerisation by Kip3D kinesin
阐明 Kip3D 驱动蛋白微管解聚机制
- 批准号:
BB/D008921/1 - 财政年份:2006
- 资助金额:
$ 44.76万 - 项目类别:
Research Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
- 批准号:82371255
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
- 批准号:82371248
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
相似海外基金
In-depth molecular studies of dynein transport in the RPE
RPE 中动力蛋白运输的深入分子研究
- 批准号:
10573020 - 财政年份:2023
- 资助金额:
$ 44.76万 - 项目类别:
Molecular and cellular mechanisms of HSV-1 assembly and egress
HSV-1 组装和流出的分子和细胞机制
- 批准号:
10842129 - 财政年份:2023
- 资助金额:
$ 44.76万 - 项目类别:
Molecular Mechanisms of LRRK1 Regulation of Bone Homeostasis
LRRK1调节骨稳态的分子机制
- 批准号:
10544742 - 财政年份:2022
- 资助金额:
$ 44.76万 - 项目类别:
Molecular Mechanisms of LRRK1 Regulation of Bone Homeostasis
LRRK1调节骨稳态的分子机制
- 批准号:
10363250 - 财政年份:2022
- 资助金额:
$ 44.76万 - 项目类别:
Molecular Mechanisms that Initiate Apical Dendrite Development During Embryonic Neuronal Development
胚胎神经元发育过程中启动顶端树突发育的分子机制
- 批准号:
10428460 - 财政年份:2021
- 资助金额:
$ 44.76万 - 项目类别:
Molecular and cellular mechanisms of HSV-1 assembly and egress
HSV-1 组装和流出的分子和细胞机制
- 批准号:
10529314 - 财政年份:2021
- 资助金额:
$ 44.76万 - 项目类别:
Molecular Mechanisms that Initiate Apical Dendrite Development During Embryonic Neuronal Development
胚胎神经元发育过程中启动顶端树突发育的分子机制
- 批准号:
10832162 - 财政年份:2021
- 资助金额:
$ 44.76万 - 项目类别:
Molecular and cellular mechanisms of HSV-1 assembly and egress
HSV-1 组装和流出的分子和细胞机制
- 批准号:
10366928 - 财政年份:2021
- 资助金额:
$ 44.76万 - 项目类别:
Molecular Mechanisms of Motility Deduced from in Vitro Reconstituted Microtubule- and Actin-Based Motor Complexes
从体外重建的基于微管和肌动蛋白的运动复合体推导出运动的分子机制
- 批准号:
10592401 - 财政年份:2020
- 资助金额:
$ 44.76万 - 项目类别:
Molecular mechanisms for neuron-specific assembly of electrical synapses
电突触神经元特异性组装的分子机制
- 批准号:
10609808 - 财政年份:2020
- 资助金额:
$ 44.76万 - 项目类别: