Identifying mechanisms underlying forebrain pathology in human PAX6 haploinsufficiency

识别人类 PAX6 单倍体不足的前脑病理学机制

基本信息

  • 批准号:
    MR/Y004299/1
  • 负责人:
  • 金额:
    $ 92.42万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The human brain is a complex structure comprised of billions of neurons which must connect to each other in a precise manner to form functional neural circuits and enable normal functioning of the brain. To make this possible, the correct numbers and types of neurons must be generated, mature, then form appropriate connections with one another. Much of this normally occurs during foetal brain development. Instructions for these developmental processes are provided by genes. One gene well known to regulate early neurodevelopment is PAX6. PAX6 protein acts by turning on or off other genes needed for normal brain development. In PAX6 haploinsufficiency, one of the two copies of PAX6 is mutated. Patients mainly suffer from congenital aniridia, a rare eye disease characterised by total or partial loss of the iris. However, they also suffer from brain malformations such as a decrease in brain areas, connectivity defects between different brain regions, and behavioural impairments, including impaired social cognition, autism and intellectual disability. As yet, the brain defects described in PAX6 haploinsufficiency patients remain mostly understudied.Previous work in animal models indicated that PAX6 is important for ensuring that the brain forms the correct numbers and types of neurons needed, and that neurons connect with their appropriate targets. We hypothesize that human PAX6 mutations disrupt these processes early in development, leading to brain malformations and behavioural symptoms found in PAX6 haploinsufficiency patients.We propose to identify the underlying causes of the symptoms displayed by PAX6 haploinsufficiency patients by investigating the effects of PAX6 mutations on the processes that we believe underlie the brain malformations found in PAX6 haploinsufficiency patients. This includes: the number and types of neurons generated, brain connectivity and neuronal circuits that result from neuronal connections. Practical and ethical constraints on use of human embryonic tissue makes studying the early actions of human PAX6 difficult. We shall therefore use advanced stem cell culture techniques to generate 3D embryonic brain tissue, termed 'cerebral organoids', which recapitulate many features of the developing human brain.We have engineered PAX6 haploinsufficient stem cell lines and will use cerebral organoids grown from these to determine how PAX6 mutations affect production of the correct numbers and types of neurons in the embryonic brain. We shall do this by identifying sets of genes expressed in individual cells in our organoids, which will tell us whether the correct number and type of neurons are being produced. By fusing organoids together in pairs, we shall how PAX6 haploinsufficiency affects the formation of neural connections between them. Tracing the neural connections using dyes will tell us whether connections are being made to the correct targets. In addition, we shall determine whether PAX6 mutations cause defective connections by staining for synaptic proteins, which are involved in these neural connections, and analyse them using an automated image analysis pipeline. This will reveal how PAX6 mutations affect the characteristics of the neural connections made. Finally, we shall study the effects of PAX6 mutations on neural circuits by recording neural activity with electrophysiological techniques. We shall dissect the characterisation of these neural circuits using pharmacological drugs that specifically affect excitatory or inhibitory neurons, to reveal how PAX6 mutations affect the state of neural circuits.By taking this multifaceted approach to identify the underlying causes of the brain malformations suffered by PAX6 haploinsufficiency patients, we can help inform further studies that target these causes, ultimately to ameliorate patient symptoms.
人类大脑是一个复杂的结构,由数十亿个神经元组成,这些神经元必须以精确的方式相互连接,以形成功能性神经回路,使大脑能够正常运作。为了使这成为可能,必须产生正确数量和类型的神经元,使其成熟,然后彼此形成适当的连接。其中大部分通常发生在胎儿大脑发育期间。这些发育过程的指令是由基因提供的。一个众所周知的调节早期神经发育的基因是PAX6。PAX6蛋白通过打开或关闭正常大脑发育所需的其他基因来发挥作用。在PAX6单倍不足中,PAX6的两个拷贝之一突变。患者主要患有先天性无虹膜,这是一种罕见的眼科疾病,其特征是虹膜全部或部分丧失。然而,他们也患有大脑畸形,如大脑区域减少,不同大脑区域之间的连接缺陷,以及行为障碍,包括社会认知受损,自闭症和智力残疾。到目前为止,PAX6单倍不足患者的大脑缺陷仍然没有得到充分的研究。之前在动物模型中的研究表明,PAX6对于确保大脑形成所需的正确数量和类型的神经元以及神经元与其适当的靶点连接非常重要。我们假设人类PAX6突变在发育早期破坏了这些过程,导致PAX6 haploinsufficiency patients.We发现脑畸形和行为症状,我们建议通过调查PAX6突变对我们认为是PAX6 haploinsufficiency patients脑畸形基础的过程的影响来确定PAX6 haploinsufficiency patients所显示症状的根本原因。这包括:产生的神经元的数量和类型,大脑连接和神经元连接产生的神经元回路。使用人类胚胎组织的实际和伦理限制使得研究人类PAX6的早期作用变得困难。因此,我们将使用先进的干细胞培养技术来产生3D胚胎脑组织,称为“脑类器官”,它概括了发育中的人脑的许多特征。我们已经设计了PAX6单倍不足干细胞系,并将使用从这些细胞中生长的脑类器官来确定PAX6突变如何影响胚胎脑中神经元的正确数量和类型的产生。我们将通过识别在我们的类器官中的单个细胞中表达的基因组来做到这一点,这将告诉我们是否正在产生正确数量和类型的神经元。通过将类器官成对融合在一起,我们将了解PAX6单倍不足如何影响它们之间神经连接的形成。使用染料追踪神经连接将告诉我们是否与正确的目标建立了连接。此外,我们将通过对参与这些神经连接的突触蛋白进行染色来确定PAX6突变是否会导致连接缺陷,并使用自动图像分析管道对其进行分析。这将揭示PAX6突变如何影响神经连接的特征。最后,我们将通过电生理技术记录神经活动来研究PAX6突变对神经回路的影响。我们将使用专门影响兴奋性或抑制性神经元的药物来剖析这些神经回路的特征,以揭示PAX 6突变如何影响神经回路的状态。通过采取这种多方面的方法来确定PAX 6单倍性不足患者脑部畸形的根本原因,我们可以帮助为针对这些原因的进一步研究提供信息,最终改善患者的症状。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Mason其他文献

NOTICING: Roots and Branches
注意:根和枝
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Mason
  • 通讯作者:
    John Mason
Establishing construct validity in an animal tissue model for laparoscopic right hemicolectomy: A feasibility study
  • DOI:
    10.1016/j.ijsu.2011.07.059
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Stevens;John Mason;Jared Torkington
  • 通讯作者:
    Jared Torkington
Surgical scholarly activity; publication rates of general surgeons during a five year period in a single UK deanery
  • DOI:
    10.1016/j.ijsu.2011.07.063
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Llion Davies;S. Henry;Thomas Reid;John Mason;Wyn Lewis
  • 通讯作者:
    Wyn Lewis
Does India Need a Universal High-Dose Vitamin A Supplementation Program?
  • DOI:
    10.1007/s12098-018-02851-x
  • 发表时间:
    2019-01-14
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Ted Greiner;John Mason;Christine Stabell Benn;H. P. S. Sachdev
  • 通讯作者:
    H. P. S. Sachdev
Equity in unilateral value chain policies: A monitoring framework for the EUDR and beyond
单边价值链政策中的公平性:欧盟《尽职调查条例》及其他相关政策的监测框架
  • DOI:
    10.1016/j.forpol.2025.103469
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Constance L. McDermott;Thomas Addoah;Tawiah Agyarko-Kwarteng;Rebecca Asare;Alex Assanvo;Mairon Bastos Lima;Helen Bellfield;Amanda Berlan;Sophia Carodenuto;Toby Gardner;Rachael D. Garrett;Caitlin Hafferty;Mark Hirons;Verina Ingram;Eric Mensah Kumeh;Joss Lyons-White;John Mason;Patrick Meyfroidt;Jasper Montana;Gustavo L.T. de Oliveira;Georg Winkel
  • 通讯作者:
    Georg Winkel

John Mason的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Mason', 18)}}的其他基金

Exploring the ecosystem limits to poverty alleviation in African forest-agriculture landscapes
探索非洲森林农业景观中扶贫的生态系统限制
  • 批准号:
    NE/K010107/1
  • 财政年份:
    2013
  • 资助金额:
    $ 92.42万
  • 项目类别:
    Research Grant
An Assessment on the Feasibility of Footsteps as a Biometric
脚步作为生物特征识别的可行性评估
  • 批准号:
    EP/D05687X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 92.42万
  • 项目类别:
    Research Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
  • 批准号:
    82370979
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
  • 批准号:
    82371255
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
  • 批准号:
    82370851
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
  • 批准号:
    82371248
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目

相似海外基金

Identifying mechanisms underlying sex differences in motoneuron discharge
识别运动神经元放电性别差异的机制
  • 批准号:
    10751793
  • 财政年份:
    2023
  • 资助金额:
    $ 92.42万
  • 项目类别:
Identifying pathogenic mechanisms underlying PACS1 Syndrome: implications for neural development - Research Supplement to Promote Diversity in Health-Related Research
识别 PACS1 综合征的致病机制:对神经发育的影响 - 促进健康相关研究多样性的研究补充
  • 批准号:
    10741578
  • 财政年份:
    2023
  • 资助金额:
    $ 92.42万
  • 项目类别:
Identifying pathogenic mechanisms underlying PACS1 Syndrome: implications for neural development
识别 PACS1 综合征的致病机制:对神经发育的影响
  • 批准号:
    10881289
  • 财政年份:
    2023
  • 资助金额:
    $ 92.42万
  • 项目类别:
A translational approach for identifying factors and mechanisms underlying pathological anxiety in preadolescent girls
识别青春期前女孩病理性焦虑的因素和机制的转化方法
  • 批准号:
    10637744
  • 财政年份:
    2023
  • 资助金额:
    $ 92.42万
  • 项目类别:
Identifying novel molecular targets, signaling pathways and mechanisms underlying fentanyl overdose-induced severe respiratory depression and lethality in rats using TMT phosphoproteomics/proteomics
使用 TMT 磷酸蛋白质组学/蛋白质组学识别芬太尼过量引起大鼠严重呼吸抑制和致死的新分子靶标、信号通路和机制
  • 批准号:
    10831163
  • 财政年份:
    2023
  • 资助金额:
    $ 92.42万
  • 项目类别:
Children's reading development: Identifying underlying mechanisms.
儿童阅读发展:识别潜在机制。
  • 批准号:
    RGPIN-2020-06555
  • 财政年份:
    2022
  • 资助金额:
    $ 92.42万
  • 项目类别:
    Discovery Grants Program - Individual
Identifying the mechanisms underlying acute exercise, stress, and cognition
识别急性运动、压力和认知的潜在机制
  • 批准号:
    574544-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 92.42万
  • 项目类别:
    University Undergraduate Student Research Awards
Identifying pathogenic mechanisms underlying PACS1 Syndrome: implications for neural development
识别 PACS1 综合征的致病机制:对神经发育的影响
  • 批准号:
    10531036
  • 财政年份:
    2022
  • 资助金额:
    $ 92.42万
  • 项目类别:
Identifying pathogenic mechanisms underlying PACS1 Syndrome: implications for neural development
识别 PACS1 综合征的致病机制:对神经发育的影响
  • 批准号:
    10676187
  • 财政年份:
    2022
  • 资助金额:
    $ 92.42万
  • 项目类别:
Identifying altered gene regulatory network states and underlying mechanisms in atrial fibrillation, a model polygenic disease
识别心房颤动(一种多基因疾病模型)中改变的基因调控网络状态和潜在机制
  • 批准号:
    472621
  • 财政年份:
    2022
  • 资助金额:
    $ 92.42万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了