AIRIaL: Artificial Intelligence and Resistance Imaging in Lung Cancer
AIRIaL:肺癌的人工智能和耐药成像
基本信息
- 批准号:MR/Y008421/1
- 负责人:
- 金额:$ 65.97万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Lung cancer is the most common cause of cancer death world-wide (~1.6 million deaths/year). Unfortunately, of all people who have lung cancer, only 5 out of 100 are living ten years after diagnosis. The main reason for this low survival rate is that standard lung cancer therapies fail due to the presence of cancer that does not respond to these treatments. In this early-stage project performed in mice, we will develop new medical imaging tests to detect therapy resistance in lung cancer. Using this imaging test, we can predict if the cancer will respond to the prescribed treatment, and if so, how well. In the future, knowing early on about how a patient will respond to treatment will enable the clinical team to switch to alternative options if necessary. This will avoid patients being given potentially toxic treatments that will not benefit them. At present doctors have to wait for CT scans about 3 months after treatment starts to be able to tell if it is working or not. We will create a computer programme (using artificial intelligence) which is able to automatically read lung scans and more accurately predict whether the cancer is resistant to treatment. Then, we will use engineered materials to deliver drugs only to the resistant cancer cells. At this stage we will test these new drugs and computer program in mice to see if this new approach is effective. By delivering the drug just to the cancer itself, we hope to reduce side effects for patients and significantly improve how well the treatment works. Finally, we will determine if our computer programme can monitor changes in cancer over time, which will provide insight into how treatment resistance occurs as this is currently not well-understood. Ultimately, we hope that the results of this project will enable doctors to tailor the treatment for lung cancer to the individual patient. Moreover, it might lead to the development of new treatments for this devastating disease.
肺癌是全世界最常见的癌症死亡原因(每年约160万人死亡)。不幸的是,在所有患有肺癌的人中,100人中只有5人在确诊后活了10年。存活率低的主要原因是标准的肺癌治疗失败,因为存在对这些治疗无效的癌症。在这个在小鼠身上进行的早期项目中,我们将开发新的医学成像测试来检测肺癌的治疗耐药性。使用这种成像测试,我们可以预测癌症是否会对处方的治疗产生反应,如果是,效果如何。在未来,及早了解患者对治疗的反应将使临床团队能够在必要时切换到替代选择。这将避免患者接受对他们没有好处的潜在毒性治疗。目前,医生必须在治疗开始后大约3个月进行CT扫描,才能知道它是否有效。我们将创建一个计算机程序(使用人工智能),该程序能够自动读取肺部扫描结果,并更准确地预测癌症是否对治疗具有抵抗力。然后,我们将使用工程材料将药物只输送到耐药的癌细胞。在这个阶段,我们将在老鼠身上测试这些新药和计算机程序,看看这种新方法是否有效。通过将药物仅用于癌症本身,我们希望减少患者的副作用,并显著改善治疗效果。最后,我们将确定我们的计算机程序是否可以随着时间的推移监测癌症的变化,这将提供对治疗耐药性如何发生的洞察,因为目前还不清楚这一点。最终,我们希望这个项目的结果将使医生能够为个别患者量身定做肺癌的治疗方法。此外,这可能会导致这种毁灭性疾病的新疗法的开发。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tim Witney其他文献
Acetyl-coA synthetase 2 promotes acetate utilization and maintains cell growth under metabolic stress
- DOI:
10.1186/2049-3002-2-s1-o9 - 发表时间:
2014-05-01 - 期刊:
- 影响因子:5.300
- 作者:
Zachary Schug;Barrie Peck;Dylan Jones;Qifeng Zhang;Israt Alam;Tim Witney;Elizabeth Smethurst;Shaun Grosskurth;Adrian Harris;Susan Critchlow;Eric Aboagye;Michael Wakelam;Almut Schulze;Eyal Gottlieb - 通讯作者:
Eyal Gottlieb
Tim Witney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tim Witney', 18)}}的其他基金
State-of-the-Art Equipment for Preclinical Molecular Imaging and Targeted Radiotherapy
最先进的临床前分子成像和靶向放射治疗设备
- 批准号:
MR/X011992/1 - 财政年份:2022
- 资助金额:
$ 65.97万 - 项目类别:
Research Grant
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 65.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)