Quantitative translational neuroscience: Bridging preclinical and human neuroscience research
定量转化神经科学:连接临床前和人类神经科学研究
基本信息
- 批准号:MR/Y010698/1
- 负责人:
- 金额:$ 213.86万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Therapies for neuropsychiatric and neurodevelopmental disorders often fail to make the transition from successful preclinical trials to real world efficacy. This is for a large part due to the lack of good animal models for these diseases, which often target uniquely human cognitive and neural processes. These problems are especially prevalent in the case of the mouse model. Mice are a popular model species, since we understand much of their genetics and are able to manipulate it. However, mouse brains are smaller and differently organized from ours. How different the brains of the mouse and human are exactly and how this influences translations of results from one species to the other remains largely unknown.Solving this problem requires new tools that allow us to directly compare the organization of the mouse and human brain. Traditionally, this is difficult to do due to the vast amounts of data required and the fact that the mouse and human brain are of such different size and shape that it's difficult to find a reference frame. We have pioneered an approach to solve this issue, which we term the 'common space approach'. In effect, we use high-throughput, whole-brain data from both species and then describe the different brains in terms of an abstract feature space consisting of common features that can be identified in both brains. For instance, we might describe the brains in terms of which genes are expressed in any given area. If we select genes that are shared by mice and humans, this will allow us to describe both brains in the same 'gene space'. This is a simple but extremely powerful way to directly compare brain organization across species.Here, we will use this approach to understand:(1) how similar each part of the mouse and human brain are. New, openly available, high quality gene expression and MRI data from both the mouse and the human allow us to compare the brains using the same type of data for the two species. Our common space approach allows us to determine how similar each part of the mouse brain is to each part of the human brain.(2) which aspects of the human brain we cannot understand based on the mouse. If we can describe the two brains in the same space, we can also assess which parts of the human brain are very distinct from the mouse, at any level of brain organization. This, in effect, shows us the limit of the mouse-human translation. (3) whether there are any systematic rules that predict whether a certain neurological or psychiatric disease can be understood using a mouse model. Though large international consortia, datasets of brain changes in a range of diseases are now available. We can combine them with our limits-of-translation data to see if there are certain predictors that indicate whether a disease can be successfully modelling in the mouse. We will then test these predictors by comparing mice models of certain conditions with human patient data from the same conditions.(4) develop a way to better relate specific mouse models of disease with specific patients. Many psychiatric disorders have not one mouse model, but many--each with a high construct validity for a very small aspect of the disease. To optimize successful translation, it would be beneficial to match specific mouse strains to specific patients. Our common space approach will allow us to do this, saving on the amount of work and the number of animals needed for translational research.This research will mostly be based at the University of Oxford, but will benefit from collaborators across the world. Large consortia have started mapping out brain changes in a range of diseases and have started to collect large amounts of human and non-human imaging data. However, to date such consortia never bridged the gap between preclinical animal research and human clinical research. This project will break those silos, building a new quantitative framework for translational neuroscience.
神经精神和神经发育障碍的治疗方法往往无法从成功的临床前试验过渡到现实世界的疗效。这在很大程度上是由于缺乏针对这些疾病的良好动物模型,这些疾病通常针对人类独特的认知和神经过程。这些问题在小鼠模型中尤为普遍。老鼠是一种受欢迎的模式物种,因为我们了解它们的大部分基因,并能够操纵它。然而,老鼠的大脑更小,结构也与人类不同。老鼠和人类的大脑究竟有多大的不同,以及这如何影响结果从一个物种到另一个物种的翻译,在很大程度上仍然是未知的。解决这个问题需要新的工具,使我们能够直接比较老鼠和人类大脑的组织。传统上,这是很难做到的,因为需要大量的数据,而且老鼠和人类大脑的大小和形状如此不同,很难找到一个参考框架。我们开创了一种解决这个问题的方法,我们称之为“公共空间方法”。实际上,我们使用来自两个物种的高通量全脑数据,然后用抽象特征空间来描述不同的大脑,这些特征空间由可以在两个大脑中识别的共同特征组成。例如,我们可以根据基因在任何特定区域的表达来描述大脑。如果我们选择老鼠和人类共有的基因,这将使我们能够在同一个“基因空间”中描述两个大脑。这是一种简单但非常有效的方法,可以直接比较不同物种的大脑组织。在这里,我们将用这种方法来了解:(1)老鼠和人类大脑的每个部分有多相似。新的、公开的、高质量的基因表达和来自小鼠和人类的MRI数据使我们能够使用相同类型的数据来比较这两个物种的大脑。我们的公共空间方法使我们能够确定老鼠大脑的每个部分与人类大脑的每个部分有多相似。(2)基于老鼠,我们无法理解人脑的哪些方面。如果我们能在同一个空间里描述这两个大脑,我们就能在大脑组织的任何层面上评估人类大脑的哪些部分与老鼠非常不同。实际上,这向我们展示了鼠-人翻译的局限性。(3)是否有任何系统的规则来预测某种神经或精神疾病是否可以用小鼠模型来理解。通过大型国际联盟,现在可以获得一系列疾病中大脑变化的数据集。我们可以将它们与我们的翻译极限数据结合起来,看看是否有某些预测因素可以表明一种疾病是否可以成功地在老鼠身上建模。然后,我们将通过比较特定条件下的小鼠模型与相同条件下的人类患者数据来测试这些预测因子。(4)开发一种更好地将特定疾病小鼠模型与特定患者联系起来的方法。许多精神疾病不是只有一个小鼠模型,而是有很多模型——每一个模型在疾病的一个非常小的方面都有很高的结构效度。为了优化成功的翻译,将特定的小鼠品系与特定的患者相匹配是有益的。我们的共同空间方法将使我们能够做到这一点,节省了翻译研究所需的工作量和动物数量。这项研究将主要在牛津大学进行,但将受益于世界各地的合作者。一些大型组织已经开始绘制一系列疾病导致的大脑变化,并开始收集大量的人类和非人类成像数据。然而,迄今为止,这样的联盟从未弥合临床前动物研究和人类临床研究之间的差距。这个项目将打破这些孤岛,为转化神经科学建立一个新的定量框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rogier Mars其他文献
Rogier Mars的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rogier Mars', 18)}}的其他基金
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 213.86万 - 项目类别:
Research Grant
相似国自然基金
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
- 批准号:82371738
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
NOD1棕榈酰化修饰通过炎症信号调控胰岛素抵抗的分子机制
- 批准号:32000529
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CIDE家族蛋白泛素化降解的机制和功能研究
- 批准号:31970707
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
缺氧通过eIF4E2/GSK3β信号通路调控细胞衰老的作用及机制
- 批准号:31970682
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
蛋白质激酶MAPK7参与纤毛组装的功能和分子机理
- 批准号:31972888
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
细胞代谢重组过程中蛋白质组热稳定性分析
- 批准号:31970706
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
以PXR、CAR为核心的调控网络、作用机制及其指导环磷酰胺个体化用药的临床转化研究
- 批准号:81173131
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于新生血管显像研究MSC治疗缺血性脑血管病的转化医学关键问题
- 批准号:81171370
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
高通量组蛋白翻译后修饰分析技术的建立及其在表观遗传学研究中的应用
- 批准号:90919047
- 批准年份:2009
- 资助金额:60.0 万元
- 项目类别:重大研究计划
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 213.86万 - 项目类别:
University of Louisville Biomedical Integrative Opportunity for Mentored Experience Development -PREP (UL-BIOMED-PREP)
路易斯维尔大学生物医学综合指导经验开发机会 -PREP (UL-BIOMED-PREP)
- 批准号:
10557638 - 财政年份:2023
- 资助金额:
$ 213.86万 - 项目类别:
Acquisition of a Bruker 11.7T/16cm Preclinical Scanner for Novel MRI/MRSI Studies
采购布鲁克 11.7T/16cm 临床前扫描仪用于新型 MRI/MRSI 研究
- 批准号:
10630511 - 财政年份:2023
- 资助金额:
$ 213.86万 - 项目类别:
Application of deep learning and novel survival models to predict MCI-to-AD dementia progression
应用深度学习和新型生存模型预测 MCI 至 AD 痴呆的进展
- 批准号:
10725359 - 财政年份:2023
- 资助金额:
$ 213.86万 - 项目类别:
Interrogating the Potential of Ccn1+ Astrocyte Niches to Drive Angiogenesis after Spinal Cord Injury
探讨 Ccn1 星形胶质细胞生态位在脊髓损伤后驱动血管生成的潜力
- 批准号:
10607960 - 财政年份:2023
- 资助金额:
$ 213.86万 - 项目类别:
Transcriptional regulation over neurogenesis of cortical output neuron segmental identity and diversity
皮质输出神经元节段同一性和多样性的神经发生的转录调控
- 批准号:
10638147 - 财政年份:2023
- 资助金额:
$ 213.86万 - 项目类别:
Request for a ThermoFisher Helios 5UC DualBeam
索取 ThermoFisher Helios 5UC DualBeam
- 批准号:
10719755 - 财政年份:2023
- 资助金额:
$ 213.86万 - 项目类别:
Neurocognitive Mechanisms of Positive Intervention Response in Reading Disability
阅读障碍积极干预反应的神经认知机制
- 批准号:
10747218 - 财政年份:2023
- 资助金额:
$ 213.86万 - 项目类别:
ShEEP Request for MagVenture rTMS machine with EEG and fMRI synchronization
ShEEP 请求配备 EEG 和 fMRI 同步功能的 MagVenture rTMS 机器
- 批准号:
10740832 - 财政年份:2023
- 资助金额:
$ 213.86万 - 项目类别:
Redefining Chiari Type I Malformation and its Impact on Brain Development
重新定义 Chiari I 型畸形及其对大脑发育的影响
- 批准号:
10629116 - 财政年份:2023
- 资助金额:
$ 213.86万 - 项目类别: