OCTage: monitoring the ageing brain via Optical Coherence Tomography of the eyes

OCTage:通过眼睛光学相干断层扫描监测衰老的大脑

基本信息

  • 批准号:
    MR/Y010825/1
  • 负责人:
  • 金额:
    $ 42.29万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Age-related changes in the brain are one of the most important determinants of how our lives change with age. The only part of the brain that can be viewed directly and non-invasively is the retina at the back of the eye. The retina is actually an outgrowth of brain tissue, and thus changes in the brain due to age and disease are often reflected in the eyes.Optical Coherence Tomography (OCT) is a relatively new technique which can image the 3D structure of living retinal tissue in near microscopic detail. OCT is already widely used to diagnose, assess and monitor eye conditions such as glaucoma, as well as monitor how systemic conditions such as diabetes are affecting the eyes. However, we believe that OCT imaging of the eyes has much greater potential to monitor brain health as well. We already know that retinal structure reflects demographic factors such as age, sex and ethnicity, and that particular neurodegenerative conditions, such as Alzheimer's and Parkinson's disease, are associated with changes in the thickness of the different tissue layers within the retina. We are excited by the possibility of using OCT scans to monitor brain health as people age. Achieving this will require detecting and interpreting very subtle changes in retinal structure, far harder to detect than the gross changes caused by eye diseases like glaucoma or age-related macular degeneration. Changes of concern will have to be discriminated from normal variability within diverse populations. And there is already a shortage of ophthalmologists trained to make even relatively straightforward diagnoses from OCT images. We propose to address this by using artificial intelligence (AI) techniques to recognise and characterise the changes that occur in the retina as people age, both in healthy ageing and in the presence of pathologies such as Parkinson's. Our vision is that one day, people could be offered an OCT scan as part of over-50s health check. These scans are cheap (around £30), quick (under two minutes), contact-free and completely painless. The scan could then be run through automated software which, as well assessing eye health, would assess whether the person was on course for a healthy old age, whether they might benefit from early interventions (e.g. better diet or exercise) or whether they should be referred for investigations for conditions such as Parkinson's. This screening could be delivered by high-street optometrists.Achieving this vision will require overcoming logistical, ethical, technical, and scientific challenges. For the AI to learn how to interpret retinal images correctly, it will need training on very large amounts of diverse, high-quality, clinically-labelled data in order to ensure robustness and reliability across diverse populations. The project therefore has 3 parts. First, we will expand our existing dataset of OCT scans, drawing on archives from local NHS hospitals and existing national scientific infrastructure such as the UK Biobank or Health Data Research UK. We have also partnered with Specsavers to collect scans in their optometry stores. Second, we will design AI methods to learn from this dataset, using techniques geared to the different quality and quantity of data available. For example, large datasets can teach the AI about variability within the population, even with little clinical information; conversely, smaller datasets with detailed clinical information can then suggest how to interpret this variability. We will produce two key pieces of software. One, OCTageNet, will estimate a person's age from their eyes. Where this is older than their actual age, it may suggest that they are not ageing healthily and that intervention could be helpful. The other, OCTagePath, will aim to detect early signs of particular conditions such as Parkinson's.Third, we will engage with public, patients and stakeholders to better understand concerns and barriers around screening for brain health
与年龄相关的大脑变化是我们生活如何随着年龄变化的最重要决定因素之一。大脑中唯一可以直接且非侵入性观察的部分是眼睛后部的视网膜。视网膜实际上是脑组织的产物,因此由于年龄和疾病而引起的大脑变化通常会反映在眼睛上。光学相干断层扫描(OCT)是一种相对较新的技术,可以以接近显微镜的细节对活体视网膜组织的3D结构进行成像。OCT已经被广泛用于诊断、评估和监测青光眼等眼部疾病,以及监测糖尿病等全身性疾病对眼睛的影响。然而,我们相信眼睛的OCT成像也有更大的潜力来监测大脑健康。我们已经知道,视网膜结构反映了人口因素,如年龄,性别和种族,以及特定的神经退行性疾病,如阿尔茨海默氏症和帕金森氏症,与视网膜内不同组织层厚度的变化有关。我们对使用OCT扫描来监测人们年龄增长时的大脑健康的可能性感到兴奋。实现这一目标需要检测和解释视网膜结构中非常细微的变化,这比青光眼或年龄相关性黄斑变性等眼科疾病引起的肉眼变化要难得多。在不同的群体中,必须将关注的变化与正常的变异区分开来。而且已经缺乏经过培训的眼科医生,他们甚至可以从OCT图像中做出相对简单的诊断。我们建议通过使用人工智能(AI)技术来识别和识别随着人们年龄的增长而发生在视网膜上的变化来解决这个问题,无论是在健康的老龄化还是在帕金森氏症等疾病的存在下。我们的愿景是,有一天,人们可以提供OCT扫描作为50岁以上健康检查的一部分。这些扫描便宜(约30英镑),快速(不到两分钟),无接触,完全无痛。然后,扫描可以通过自动化软件运行,该软件除了评估眼睛健康外,还将评估该人是否处于健康的老年时期,他们是否可以从早期干预(例如更好的饮食或运动)中受益,或者他们是否应该被转介进行帕金森氏症等疾病的调查。这种筛查可以由商业街的验光师提供,实现这一愿景需要克服后勤、道德、技术和科学方面的挑战。为了让人工智能学习如何正确解释视网膜图像,它需要对大量多样化、高质量、临床标记的数据进行训练,以确保不同人群的鲁棒性和可靠性。因此,该项目有三个部分。首先,我们将扩大现有的OCT扫描数据集,利用当地NHS医院和现有的国家科学基础设施(如英国生物银行或英国健康数据研究)的档案。我们还与Specsavers合作,在他们的验光店收集扫描数据。其次,我们将设计人工智能方法来从这个数据集中学习,使用适合不同质量和数量的数据的技术。例如,大型数据集可以教人工智能了解人群中的变异性,即使临床信息很少;相反,具有详细临床信息的较小数据集可以建议如何解释这种变异性。我们将开发两个关键的软件。一个是OCTageNet,它可以通过一个人的眼睛来估计他的年龄。如果这比他们的实际年龄大,这可能表明他们没有健康地衰老,干预可能会有所帮助。第三,我们将与公众、患者和利益相关者接触,以更好地了解围绕大脑健康筛查的担忧和障碍

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new convolutional neural network based on combination of circlets and wavelets for macular OCT classification.
  • DOI:
    10.1038/s41598-023-50164-7
  • 发表时间:
    2023-12-19
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Arian, Roya;Vard, Alireza;Kafieh, Rahele;Plonka, Gerlind;Rabbani, Hossein
  • 通讯作者:
    Rabbani, Hossein
Discrimination of multiple sclerosis using OCT images from two different centers
使用来自两个不同中心的 OCT 图像区分多发性硬化症
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JCA Read其他文献

JCA Read的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JCA Read', 18)}}的其他基金

Incorporating vertical disparity into computational models of depth perception
将垂直视差纳入深度感知的计算模型
  • 批准号:
    G0601566/1
  • 财政年份:
    2008
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Research Grant

相似国自然基金

RGD-68Ga@AuNCs PET监测PRMT5通过VEGFA调节肺腺癌血管新生的功能及机制
  • 批准号:
    82372007
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目

相似海外基金

Longitudinal Study of Health and Ageing in Kenya (LOSHAK)
肯尼亚健康与老龄化纵向研究 (LOSHAK)
  • 批准号:
    10427945
  • 财政年份:
    2022
  • 资助金额:
    $ 42.29万
  • 项目类别:
An investigation into socially acceptable long term anonymous video monitoring for assessment of behaviour changes in ageing adults
对社会可接受的长期匿名视频监控的调查,以评估老年人的行为变化
  • 批准号:
    2650866
  • 财政年份:
    2021
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Studentship
SMILE: Optimising SMarter Inclusive Living Environments for ageing people within their circles of care.
微笑:为护理范围内的老年人优化更智能、包容的生活环境。
  • 批准号:
    431003
  • 财政年份:
    2020
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Operating Grants
Health Monitoring of Ageing Bridge Bearings
老化桥梁轴承的健康监测
  • 批准号:
    515151-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
‘3rings Smart Plug’ provides dynamic monitoring of ageing relatives to enable Distributed Family Care(DFC) for Internet enabled families without the need for the Internet to be present in the ageing relatives homes therefore connecting the unconnected lov
“3rings 智能插头”提供对年老亲属的动态监控,为支持互联网的家庭启用分布式家庭护理 (DFC),而年老亲属家中无需互联网,从而连接未联网的爱人
  • 批准号:
    710629
  • 财政年份:
    2015
  • 资助金额:
    $ 42.29万
  • 项目类别:
    GRD Proof of Concept
Electrochemical sensor for monitoring levels of oxygen and nitrogen reactive species to benefit ageing research
用于监测氧和氮活性物质水平的电化学传感器有利于老化研究
  • 批准号:
    BB/K013807/1
  • 财政年份:
    2013
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Research Grant
Performance monitoring dysfunction in ageing
衰老过程中的表现监测功能障碍
  • 批准号:
    nhmrc : 1008044
  • 财政年份:
    2011
  • 资助金额:
    $ 42.29万
  • 项目类别:
    NHMRC Project Grants
Preventing postural hypotension, syncope and falls with smart materials and monitoring
利用智能材料和监测预防体位性低血压、晕厥和跌倒
  • 批准号:
    250650
  • 财政年份:
    2011
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Operating Grants
TOTALCARE:a digital health-care framework integrating secure personal monitoring with P2P medical condition community support focused on ageing &obese
TOTALCARE:一个数字医疗保健框架,将安全的个人监控与针对老龄化的 P2P 医疗状况社区支持相结合
  • 批准号:
    TS/H000135/1
  • 财政年份:
    2009
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Research Grant
TOTALCARE:a digital health-care framework integrating secure personal monitoring with P2P medical condition community support focused on ageing &obese
TOTALCARE:一个数字医疗保健框架,将安全的个人监控与针对老龄化的 P2P 医疗状况社区支持相结合
  • 批准号:
    TS/H000143/1
  • 财政年份:
    2009
  • 资助金额:
    $ 42.29万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了