Development of computational models of bone formation and resorption to predict changes in bone in preclinical intervention studies.
开发骨形成和吸收的计算模型,以预测临床前干预研究中骨的变化。
基本信息
- 批准号:NC/K000780/1
- 负责人:
- 金额:$ 46.49万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We want to develop computer programs to test new therapies for diseases of bone to reduce animal testing and accelerate research progress. Musculoskeletal disease including arthritis, osteoarthritis and osteoporosis are the most prevalent cause of work-related disease affecting the UK and account for one third of GP consultations. Patients affected by these conditions have often reduced mobility, leading to isolation and poor quality of life. Despite excellent progress in the care of these conditions there are still high numbers of people, who do not respond to these treatments very well. New cures are therefore required for these patients.Any new drug needs to be tested on animals before it can be used in people. This is not only to see if the drugs are safe but also to understand whether they are efficacious. When doing this, groups of mice are needed to test each individual dose or time of administration and the mice have to be killed before the effect of the drug on bone can be determined. This can take many experiments, and is very laborious, expensive and time consuming. More importantly, it may require the use of many animals as several conditions need to be tested, such as how much drug needs to be administered to see a benefit, for how long and how often. Another important problem is that sometimes it is difficult to know how well the mouse will predict what will happen in patients. This is because we have never been able to compare them properly. To do that, we need to take pieces of bone for analysis. We can take bone samples in mice but this is less straightforward in patients because even taking extremely small samples can be an unpleasant procedure and if done for research purposes can only be practically done in very small numbers of volunteers. This project aims to overcome these problems by creating computer programs able to predict how a drug may work, how much is needed and for how long. Similar programs are being created to predict responses in patients, so comparisons between human and mice can be made. In this way when a new drug will have to be tested, we can use the computer program first and then determine the best dose and time of administration to be tested only in a small group of animals to verify the accuracy of the computer prediction. To create the computer program we will collect data first by taking a drug which is known to build bone well and is already used in patients affected by osteoporosis; giving it to mice at different doses and for different times and then analysing the effects on bone mass, and strength in two ways. One in the traditional way of looking at several different time points, and one uses a new piece of equipment, called an in vivo microcomputed tomography (microCT) scanner, which is capable of looking at the bones in the same mouse over a period of time, without the need to kill it. This equipment is very similar to the DEXA scan used in patients. We will compare the new method with the traditional one to ensure the new method performs in the same way or better than the traditional one. The data will be used to generate an equation which will model how bone is formed so that when a new drug needs to be tested we will be able to use this equation to predict how good this will be. By adopting both the new equipment - in vivo microCT and this equation we will reduce the number of mice used, and the data derived will be more precise because they have been measured in the same mouse. Moreover, we can build similar programs in humans and compare the two understanding better when mice will predict patients' response.
我们希望开发计算机程序来测试骨骼疾病的新疗法,以减少动物试验并加速研究进展。包括关节炎、骨关节炎和骨质疏松症在内的肌肉骨骼疾病是影响英国的工作相关疾病的最常见原因,占全科医生咨询的三分之一。受这些疾病影响的患者往往行动不便,导致孤立和生活质量差。尽管在治疗这些疾病方面取得了很大进展,但仍然有大量的人对这些治疗反应不佳。因此,需要新的治疗方法来治疗这些病人。任何新药在用于人类之前都需要在动物身上进行测试。这不仅要看药物是否安全,还要了解它们是否有效。当这样做时,需要小鼠组来测试每个单独的剂量或给药时间,并且在可以确定药物对骨的影响之前必须杀死小鼠。这可能需要进行许多实验,并且非常费力、昂贵和耗时。更重要的是,它可能需要使用许多动物,因为需要测试几种条件,例如需要施用多少药物才能看到益处,多长时间和多久一次。另一个重要的问题是,有时很难知道老鼠对患者的预测能力。这是因为我们从来没有能够正确地比较它们。为此,我们需要取一些骨头进行分析。我们可以在小鼠身上采集骨骼样本,但在患者身上就不那么简单了,因为即使是采集极小的样本也是一个令人不快的过程,如果是为了研究目的,实际上只能在极少数志愿者身上进行。该项目旨在通过创建计算机程序来克服这些问题,这些程序能够预测药物如何起作用,需要多少以及持续多久。类似的程序正在被创建来预测患者的反应,因此可以在人类和小鼠之间进行比较。这样,当一种新药必须进行测试时,我们可以先使用计算机程序,然后确定最佳剂量和给药时间,只在一小群动物中进行测试,以验证计算机预测的准确性。为了创建计算机程序,我们将首先通过服用一种已知可以良好构建骨骼并且已经用于骨质疏松症患者的药物来收集数据;以不同剂量和不同时间将其给予小鼠,然后分析对骨量的影响,并以两种方式进行强度。一种是用传统的方法观察几个不同的时间点,另一种是使用一种新的设备,称为体内微型计算机断层扫描(microCT)扫描仪,它能够在一段时间内观察同一只老鼠的骨骼,而不需要杀死它。这种设备与患者使用的DEXA扫描非常相似。我们将比较新方法与传统方法,以确保新方法的性能与传统方法相同或更好。这些数据将用于生成一个方程,该方程将模拟骨骼如何形成,以便当需要测试新药时,我们将能够使用该方程来预测这将有多好。通过采用新的设备-体内microCT和这个方程,我们将减少使用的小鼠数量,并且所获得的数据将更加精确,因为它们是在同一只小鼠中测量的。此外,我们可以在人类身上建立类似的程序,并比较两者,更好地了解小鼠何时会预测患者的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilaria Bellantuono其他文献
水和ゲルの表面摩擦と潤滑-生体低摩擦の謎に迫る
水合凝胶的表面摩擦和润滑——接近低生物摩擦的奥秘
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Michal Dudek;Nicole Gossan;Nan Yang;Hee-Jeong Im;Jayalath PD Ruckshanthi;Hikari Yoshitane;Xin Li;Ding Jin;Ping Wang;Maya Boudiffa;Ilaria Bellantuono;Yoshitaka Fukada;Ray P. Boot-Handford;and Qing-Jun Meng.;グン剣萍 - 通讯作者:
グン剣萍
Ilaria Bellantuono的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilaria Bellantuono', 18)}}的其他基金
Targeting mechanisms of ageing with geroprotectors to maintain musculoskeletal health
使用老年保护剂针对衰老机制以维持肌肉骨骼健康
- 批准号:
BB/R001510/1 - 财政年份:2018
- 资助金额:
$ 46.49万 - 项目类别:
Research Grant
The role of pro-inflammatory mesenchymal stem cells in rheumatoid arthritis
促炎间充质干细胞在类风湿性关节炎中的作用
- 批准号:
MR/K008862/1 - 财政年份:2012
- 资助金额:
$ 46.49万 - 项目类别:
Research Grant
相似国自然基金
物体运动对流场扰动的数学模型研究
- 批准号:51072241
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular dissection of extrachromosomal DNA formation, development, and evolution
染色体外 DNA 形成、发育和进化的分子解剖
- 批准号:
10640520 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Development of the multisensory computations underlying flavor processing
风味加工基础的多感官计算的发展
- 批准号:
10584065 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Computational Development of Novel Dyslipidemia Therapeutic Candidates to Disrupt ApoC-III Conformation
破坏 ApoC-III 构象的新型血脂异常治疗候选物的计算开发
- 批准号:
10760187 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Computational fluid dynamics analysis using sophisticated plant models towards the development of digital twins in greenhouse horticulture
使用复杂的植物模型进行计算流体动力学分析,以开发温室园艺中的数字孪生
- 批准号:
23K05477 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Open-source Software Development Supplement for 3D quantitative analysisof mouse models of structural birth defects through computational anatomy
通过计算解剖学对结构性出生缺陷小鼠模型进行 3D 定量分析的开源软件开发补充
- 批准号:
10839199 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Representing Human Anatomy for Computation and Communication: Synergistic Development of an Anatomical Ontology and Semantically-Augmented Anatomical Graphics
代表人体解剖学进行计算和通信:解剖本体论和语义增强解剖图形的协同发展
- 批准号:
10635511 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Development & application of computational methods for the study of protein dynamics with PmHMGR as a model system
发展
- 批准号:
10607487 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Neurocomputational Mechanisms of Affective Semantic Memory Development
情感语义记忆发展的神经计算机制
- 批准号:
10755053 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Development of phenolic small molecule inhibitors of PfATP6, a Plasmodium calcium ATPase
疟原虫钙 ATP 酶 PfATP6 酚类小分子抑制剂的开发
- 批准号:
10627419 - 财政年份:2023
- 资助金额:
$ 46.49万 - 项目类别:
Development of High-Performance Finite-Difference Based Computational Models for Electromagnetic Field Assessment
开发基于有限差分的高性能电磁场评估计算模型
- 批准号:
568474-2022 - 财政年份:2022
- 资助金额:
$ 46.49万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




