Development & application of computational methods for the study of protein dynamics with PmHMGR as a model system

发展

基本信息

  • 批准号:
    10607487
  • 负责人:
  • 金额:
    $ 4.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-25 至 2025-08-24
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Diseases are frequently caused by dysfunction of proteins in the body, perhaps due to maladapted genetics or from a wide variety of other causes. Researchers can gain a glimpse into this function through the study of a protein’s mechanism and dynamics. Ideally, a complete understanding of the role of a protein in biophysical interactions would describe the entire mechanistic pathway on an atomistic and dynamic level. However, this cannot be attained with experimental studies alone with today’s capabilities. Computational studies can provide experimentally inaccessible quantitative and atomistic information so they serve as powerful tools for better understanding diseases and identifying targets for experimental follow-up and potential treatment, but they carry little weight without rigorous experimental validation. We seek to reconcile experimental and computational data, equipping researchers with a method to produce the aforementioned continuous and atomistic information on protein dynamics so that they can elucidate the long timescale dynamics of proteins on an atomic level. When deconvolving time-resolved crystallographic data, I will substitute the typical static crystallographic initial inputs with structures from molecular dynamics simulations and predictive models to improve the continuity and accuracy of deconvoluted data. The objective of this work is to produce the aforementioned ideal dynamics information for a significant portion of the mechanism of PmHMGR as a demonstration and refinement of the proposed Markov State informed Multilinear Singular Value Decomposition (MSiMSVD) method which reconciles experimental and computational data. Application of the MSiMSVD method to slow dynamical events, such as the PmHMGR 2nd hydride transfer, is limited by the ability of molecular dynamics to perform accurate long-timescale simulations. This often requires Transition State Force Fields (TSFFs), but their parameterization for biomolecules often falls into local optimization minima due to high dimensionality. To reduce local minima trapping and make TSFF generation more accessible for biophysical research, I will apply constraints and swarm intelligence techniques to improve current TSFF parameterization. Collectively, these aims will provide a means by which experimental and computational techniques can work synergistically to produce the continuous atomistic protein dynamics information ideal for the investigation of proteins and their related functions and diseases.
项目摘要 疾病通常是由体内蛋白质功能障碍引起的, 由于不适应的遗传或其他各种各样的原因。研究人员可以获得 通过对蛋白质的机制和动力学的研究来了解这种功能。 理想情况下,对蛋白质在生物物理相互作用中的作用的完整理解将 在原子和动态水平上描述整个机械路径。然而,在这方面, 这是以今天的能力,单靠实验研究所达不到的。 计算研究可以提供实验无法实现的定量和原子 信息,使它们成为更好地了解疾病的有力工具, 确定实验性随访和潜在治疗的目标,但它们几乎没有 没有严格的实验验证。我们试图调和实验和 计算数据,为研究人员提供了一种方法, 连续和原子信息的蛋白质动力学,使他们能够阐明 蛋白质在原子水平上的长时间动态。反卷积时间分辨时 晶体学数据,我将用典型的静态晶体学初始输入替换为 结构从分子动力学模拟和预测模型,以提高 解卷积数据的连续性和准确性。这项工作的目标是产生 上述理想的动力学信息的机制的重要部分, PmHMGR作为演示和细化马尔可夫状态的建议告知 多线性奇异值分解(MSiMSVD)方法, 实验和计算数据。MSiMSVD方法在慢信号处理中的应用 动力学事件,如PmHMGR第二次氢化物转移,是有限的能力, 分子动力学来进行精确的长时间模拟。这常常需要 过渡态力场(TSFF),但它们对生物分子的参数化通常 由于高维数,福尔斯陷入局部优化极小值。减少局部极小值 捕获,使TSFF一代更容易为生物物理研究,我将申请 约束和群体智能技术,以改善目前的TSFF参数化。 总的来说,这些目标将提供一种手段, 计算技术可以协同工作,以产生连续的原子 蛋白质动力学信息的理想研究蛋白质及其相关 功能和疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikaela Farrugia其他文献

Mikaela Farrugia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

企业绩效评价的DEA-Benchmarking方法及动态博弈研究
  • 批准号:
    70571028
  • 批准年份:
    2005
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
  • 批准号:
    10100319
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Studentship
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
  • 批准号:
    2892813
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Standard Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233969
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
  • 批准号:
    2311733
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
  • 批准号:
    10662975
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233968
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Continuing Grant
Benchmarking Quantum Advantage
量子优势基准测试
  • 批准号:
    EP/Y004418/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了