MUSCULOSKELETAL STIFFNESS AND LOCOMOTION
肌肉骨骼僵硬和运动
基本信息
- 批准号:6171765
- 负责人:
- 金额:$ 1.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-04-15 至 2001-02-01
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Muscles, tendons, and ligaments have spring-like characteristics. Because
these musculoskeletal elements change length when joints flex or extend,
it is not surprising that joints exhibit spring-like characteristics. The
control of musculoskeletal stiffness is complex with many factors
affecting the stiffness of each joint. However, in some multi-jointed
movements, including mammalian running, the elements of the
musculoskeletal system are integrated together so that the overall
musculoskeletal system exhibits spring-like behavior. Experimental
findings on the mechanics of running gaits have revealed that the overall
musculoskeletal system behaves like a single linear spring in all of the
mammals studied to date, including running humans, trotting dogs and
horses, and hopping kangaroos. This observation has led to the development
of a spring-mass model for running, consisting of a single linear massless
"leg spring" and a mass. The "leg spring" represents the spring-like
characteristics of the overall integrated musculoskeletal system during
locomotion, and the mass is equivalent to the mass of the animal. The
general objective of the proposed research is to gain an understanding of
the link between musculoskeletal stiffness and locomotion biomechanics.
Given the complexity of the control of the stiffness of a single muscle or
joint, it is not realistic to use a forward dynamics approach that begins
at the level of the stiffness-of a single muscle and attempts to explain
the mechanics of running. We propose to use an inverse dynamics approach
that begins by focusing on the link between locomotion mechanics and
overall musculoskeletal stiffness. Under the umbrella of Specific Aim 1,
the importance of adjustments to the stiffness of the overall
musculoskeletal system to accommodate running on varied terrain is
examined. This research will involve examining the adjustments to
musculoskeletal stiffness for running on surfaces of different stiffnesses
and surfaces of varying predictability. Under the umbrella of Specific Aim
2, we will do a series of interrelated studies examining the mechanisms
for adjusting the stiffness of the overall musculoskeletal system during
running. These studies will include examining the range over which the
stiffness of a single joint of the leg can be adjusted during locomotion.
In addition, it will involve examining the relative importance of changes
to joint stiffness and posture in adjusting the stiffness of the overall
musculoskeletal system during running. The experiments under both Specific
Aims l and 2 will involve a combined kinetic and kinematic analysis of
running to determine overall musculoskeletal stiffness and joint
stiffness. The findings will give new information about the optimal design
of floors and tracks for minimizing overuse injuries during sustained
weight-bearing aerobic activities, and the optimal design of spring-based
prosthetic legs and robotic legs. Finally, our research will begin
applying knowledge of the neural control of joint stiffness to
understanding the mechanics of a natural activity that is performed by all
legged animals, locomotion.
肌肉、肌腱和韧带具有弹簧般的特性。 因为
当关节弯曲或伸展时,这些肌肉骨骼元件会改变长度,
关节表现出类似弹簧的特性并不奇怪。这
肌肉骨骼刚度的控制很复杂,涉及许多因素
影响各关节的刚度。然而,在一些多关节
运动,包括哺乳动物的跑步,
肌肉骨骼系统整合在一起,使整体
肌肉骨骼系统表现出类似弹簧的行为。实验性的
关于跑步步态机制的研究结果表明,总体而言
肌肉骨骼系统的所有行为就像一个线性弹簧
迄今为止研究的哺乳动物,包括奔跑的人类、奔跑的狗和
马和跳跃的袋鼠。这一观察导致了发展
用于跑步的弹簧质量模型,由单个线性无质量组成
“腿弹簧”和一个质量。 “腿弹簧”代表弹簧般的
整个综合肌肉骨骼系统的特征
运动,质量相当于动物的质量。这
拟议研究的总体目标是了解
肌肉骨骼刚度与运动生物力学之间的联系。
考虑到单个肌肉或肌肉的硬度控制的复杂性
联合起来,使用开始的正向动力学方法是不现实的
在单块肌肉的僵硬水平上并试图解释
跑步的机制。我们建议使用逆动力学方法
首先关注运动力学和
整体肌肉骨骼僵硬。在具体目标 1 的保护下,
调整整体刚度的重要性
适应在不同地形上跑步的肌肉骨骼系统
检查了。这项研究将涉及检查调整
在不同硬度的表面上跑步时的肌肉骨骼硬度
和不同可预测性的表面。在具体目标的保护下
2、我们将做一系列相关的研究来检验其机制
用于调整整个肌肉骨骼系统的刚度
跑步。这些研究将包括检查
腿部单个关节的刚度可以在运动过程中进行调节。
此外,还将涉及检查变更的相对重要性
以关节刚度和姿势来调整整体的刚度
跑步时的肌肉骨骼系统。两种特定条件下的实验
目标 l 和 2 将涉及组合动力学和运动学分析
跑步以确定整体肌肉骨骼刚度和关节
刚性。研究结果将提供有关优化设计的新信息
地板和轨道,以尽量减少持续期间的过度使用伤害
负重有氧运动及基于弹簧的优化设计
假肢和机器人腿。最后,我们的研究将开始
应用关节刚度的神经控制知识
了解所有人执行的自然活动的机制
有腿的动物,运动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CLAIRE T FARLEY其他文献
CLAIRE T FARLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CLAIRE T FARLEY', 18)}}的其他基金
MAXIMUM SPEED AND ENERGY COST IN TERRESTRIAL LOCOMOTION
陆地运动的最大速度和能量成本
- 批准号:
2077981 - 财政年份:1993
- 资助金额:
$ 1.11万 - 项目类别:
相似海外基金
CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
- 批准号:
2340080 - 财政年份:2024
- 资助金额:
$ 1.11万 - 项目类别:
Continuing Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
- 批准号:
2413182 - 财政年份:2024
- 资助金额:
$ 1.11万 - 项目类别:
Standard Grant
Cruising the whale superhighway: The evolution, biomechanics, and ecological drivers of migration in cetaceans
巡航鲸鱼高速公路:鲸目动物迁徙的进化、生物力学和生态驱动因素
- 批准号:
NE/Y000757/1 - 财政年份:2024
- 资助金额:
$ 1.11万 - 项目类别:
Research Grant
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
- 批准号:
DP240101449 - 财政年份:2024
- 资助金额:
$ 1.11万 - 项目类别:
Discovery Projects
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
- 批准号:
2338676 - 财政年份:2024
- 资助金额:
$ 1.11万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
- 批准号:
2344385 - 财政年份:2024
- 资助金额:
$ 1.11万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
- 批准号:
2341368 - 财政年份:2024
- 资助金额:
$ 1.11万 - 项目类别:
Standard Grant
Material testing machine for biomechanics
生物力学材料试验机
- 批准号:
520201861 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别:
Major Research Instrumentation
Stem cell/niche biomechanics in intestinal health and disease
肠道健康和疾病中的干细胞/利基生物力学
- 批准号:
2885708 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别:
Studentship
Determining the impact of lifestyle-related biomechanics on muscle in the ageing human arm
确定与生活方式相关的生物力学对衰老人类手臂肌肉的影响
- 批准号:
2899554 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别:
Studentship