The role of decision accuracy in the evolution of niche width
决策准确性在生态位宽度演变中的作用
基本信息
- 批准号:NE/H015469/2
- 负责人:
- 金额:$ 64.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Why are some animals generalists and others specialists? Humans are the ultimate generalists, eating thousands of different types of food and making a living in a thousand different ways. Some species of fly are quite the opposite, however, and will spend their entire life living on one single species of plant. The advantages of generalisation seem obvious: an animal that can use everything should have no problems finding food or somewhere to live. The reasons why many millions of economically important animal species such as plant eating insects and many disease-causing parasites are so specialised, however, is less clear. These issues are important because the level of specialisation of an animal is a key factor in its ability to survive environmental change. Recently it has been suggested that specialisation may evolve to avoid confusion. Just as a person interested in sports searching a cluttered TV schedule might focus only on the word 'sport' and filter-out all other information, it is reasoned that an insect flying over a cluttered field of plants might try to focus on a smaller number of plants and become a specialist. Most experimental studies conducted so far do indeed indicate that specialists find it easier to locate and select suitable resources. I recently published a computer modelling study that suggests the conditions in nature in which this neural limitations hypothesis ('specialising to avoid confusion') could work are just the ones actually found in nature. The purpose of this fellowship is to establish just how important the neural limitations hypothesis is in the evolution of specialist animal lifestyles. My published computer model consists of a virtual world where animals search a cluttered environment for appropriate resources using eyes and a sensory system. I train the virtual animals using natural selection to become more specialised and then determine whether their nervous systems become less confused. I will reconstruct this model, this time including virtual noses instead of virtual eyes to look for resources. Modelling smell is important as most specialised animals actually sniff out food rather than looking for it. A 'smell' is also commonly a more complex and confusing signal than a 'sight' and so I predict that the neural limitations hypothesis is especially likely to be important in animals that use smell to locate resources. I will test this prediction with my model and then check to see that I can reproduce my model predictions in a real living system by recreating model simulations in a laboratory microcosm (a 'little world' in the laboratory) using the fruit fly, Drosophila, an animal that uses smell to find food. I will then take the insights I have gained from my computer model of smell and feed these into a more traditional class of model called an evolutionary genetic model that contains assumptions about the genetics of specialisation. This will tell me whether the neural limitations mechanism can drive the specialisation process to completion and even split populations into new species. The project will ultimately help us to better understand specialisation and how animals respond to environmental change. It could also help to protect crops against pests. Intercropping (planting more that one type of crop plant together in a field) is an increasingly popular agricultural method because it appears to lessen pest insect attacks. This reduction in attack could be due to the confusion pests experience in a more complex field environment. By studying how animals become confused we may be able to design intercropping strategies to even better confuse pests and so protect crops in a totally environmentally friendly way.
为什么有些动物是通才,有些动物是专才?人类是终极的多面手,吃成千上万种不同的食物,用上千种不同的方式谋生。然而,有些种类的苍蝇却恰恰相反,它们一生都以一种植物为食。普遍化的好处似乎是显而易见的:一个能利用一切的动物应该在寻找食物和住所方面没有问题。然而,数以百万计的具有重要经济意义的动物物种,如以植物为食的昆虫和许多致病的寄生虫,为何如此专门化,其原因尚不清楚。这些问题很重要,因为动物的专业化水平是其在环境变化中生存能力的关键因素。最近有人提出,专业化可能是为了避免混淆而进化的。就像一个对体育感兴趣的人在搜索杂乱的电视节目表时可能只关注“体育”这个词,而过滤掉所有其他信息一样,有理由认为,一只飞过一片杂乱的植物地的昆虫可能会试图关注更少的植物,从而成为一个专家。迄今为止进行的大多数实验研究确实表明,专家们发现更容易找到和选择合适的资源。我最近发表了一项计算机建模研究,该研究表明,这种神经限制假说(“专门避免混淆”)在自然界中可能起作用的条件,只是在自然界中实际发现的条件。这项研究的目的是确定神经限制假说在特殊动物生活方式的进化中有多重要。我发表的计算机模型由一个虚拟世界组成,在这个虚拟世界里,动物用眼睛和感官系统在杂乱的环境中寻找合适的资源。我用自然选择训练虚拟动物,让它们变得更加专业化,然后确定它们的神经系统是否变得不那么混乱。我会重建这个模型,这次用虚拟的鼻子代替虚拟的眼睛来寻找资源。模仿嗅觉很重要,因为大多数专门的动物实际上是嗅出食物而不是寻找食物。“嗅觉”通常也是一种比“视觉”更复杂、更令人困惑的信号,因此我预测,神经限制假说对那些利用嗅觉定位资源的动物尤其重要。我将用我的模型来测试这个预测,然后检查我是否可以在一个真实的生命系统中重现我的模型预测,通过在实验室的微观世界(实验室的一个“小世界”)中重现模型模拟,使用果蝇,一种利用嗅觉寻找食物的动物。然后,我将把我从计算机嗅觉模型中获得的见解输入到一个更传统的模型中,这个模型被称为进化遗传模型,它包含了关于专业化遗传学的假设。这将告诉我,神经限制机制是否能够推动专业化进程完成,甚至将种群分裂成新的物种。该项目最终将帮助我们更好地理解专业化以及动物如何应对环境变化。它还可以帮助保护作物免受害虫侵害。间作(在一块地里同时种植一种以上的作物)是一种越来越受欢迎的农业方法,因为它似乎可以减少害虫的袭击。这种攻击的减少可能是由于害虫在更复杂的野外环境中所经历的混乱。通过研究动物是如何变得困惑的,我们也许能够设计出间作策略,更好地迷惑害虫,从而以一种完全环保的方式保护作物。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The relative efficiency of modular and non-modular networks of different size.
- DOI:10.1098/rspb.2014.2568
- 发表时间:2015-03-07
- 期刊:
- 影响因子:0
- 作者:Tosh CR;McNally L
- 通讯作者:McNally L
Control of tomato whiteflies using the confusion effect of plant odours
- DOI:10.1007/s13593-014-0219-4
- 发表时间:2014-04
- 期刊:
- 影响因子:7.3
- 作者:C. Tosh;B. Brogan
- 通讯作者:C. Tosh;B. Brogan
Can computational efficiency alone drive the evolution of modularity in neural networks?
- DOI:10.1038/srep31982
- 发表时间:2016-08-30
- 期刊:
- 影响因子:4.6
- 作者:Tosh CR
- 通讯作者:Tosh CR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Tosh其他文献
Colin Tosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colin Tosh', 18)}}的其他基金
The role of decision accuracy in the evolution of niche width
决策准确性在生态位宽度演变中的作用
- 批准号:
NE/H015469/1 - 财政年份:2010
- 资助金额:
$ 64.22万 - 项目类别:
Fellowship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
补偿性还是非补偿性规则:探析风险决策的行为与神经机制
- 批准号:31170976
- 批准年份:2011
- 资助金额:64.0 万元
- 项目类别:面上项目
基于神经营销学方法的品牌延伸认知与决策研究
- 批准号:70772048
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Optimizing prostate cancer care: integrating risks, benefits, and patient experiences in the new era of molecular imaging
优化前列腺癌护理:在分子成像新时代整合风险、收益和患者体验
- 批准号:
10712074 - 财政年份:2023
- 资助金额:
$ 64.22万 - 项目类别:
Circulating Bacteriophages for the Diagnosis of Sepsis
用于诊断脓毒症的循环噬菌体
- 批准号:
10673035 - 财政年份:2022
- 资助金额:
$ 64.22万 - 项目类别:
Circulating Bacteriophages for the Diagnosis of Sepsis
用于诊断脓毒症的循环噬菌体
- 批准号:
10510456 - 财政年份:2022
- 资助金额:
$ 64.22万 - 项目类别:
mHealth to Enable Task Sharing for Hypertension Care in LMIC
移动医疗将在中低收入国家实现高血压护理任务共享
- 批准号:
10471363 - 财政年份:2021
- 资助金额:
$ 64.22万 - 项目类别:
mHealth to Enable Task Sharing for Hypertension Care in LMIC
移动医疗将在中低收入国家实现高血压护理任务共享
- 批准号:
10880472 - 财政年份:2021
- 资助金额:
$ 64.22万 - 项目类别:
mHealth to Enable Task Sharing for Hypertension Care in LMIC
移动医疗将在中低收入国家实现高血压护理任务共享
- 批准号:
10269175 - 财政年份:2021
- 资助金额:
$ 64.22万 - 项目类别:
Frailty and Resiliency in Older Adults with Acute Myocardial Infarction
患有急性心肌梗塞的老年人的虚弱和恢复能力
- 批准号:
10653124 - 财政年份:2020
- 资助金额:
$ 64.22万 - 项目类别:
Frailty and Resiliency in Older Adults with Acute Myocardial Infarction
患有急性心肌梗塞的老年人的虚弱和恢复能力
- 批准号:
10216336 - 财政年份:2020
- 资助金额:
$ 64.22万 - 项目类别:
Improving quantitative accuracy and tissue visualization in CBCT guided radiation therapy
提高 CBCT 引导放射治疗的定量准确性和组织可视化
- 批准号:
10264142 - 财政年份:2020
- 资助金额:
$ 64.22万 - 项目类别: