A Systems Biology Platform for Predictive Ecotoxicology in Daphnia magna
大型溞预测生态毒理学的系统生物学平台
基本信息
- 批准号:NE/I028246/1
- 负责人:
- 金额:$ 75.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The monitoring of the environment for adverse effects of chemical pollution is of paramount importance in maintaining biodiversity and environmental health. This is particularly important for the aquatic environment into which a wide range of pollutants find their way, for example from pesticide run-off, industrial spills and excess nutrients from the release of untreated sewage. Pollution remains a major problem in the UK, with the Environment Agency estimating that up to 82% of rivers are 'at risk' from chemicals such as nitrate and phosphorus. Often adverse impacts to these pollutants can only be identified when they are sufficiently severe so as to affect survival of organisms and thus are identifiable at a late stage, after the damage is done. Attempts have been made to use more sensitive molecular indicators of early change ("biomarkers") but these generally inform only on the levels of chemical exposure and have limited diagnostic or predictive power in relation to toxicity. Therefore the application of molecular biomarkers to environmental monitoring has been very limited to date.Inspired by the tremendous success of recent technologies in biomedicine, we propose to develop an equivalent system for biomarker discovery in an environmental context, i.e., to develop biomarkers for application to environmental monitoring and diagnostics. These technologies can measure many thousands of biochemicals (including gene products and metabolites) in exposed organisms and by using mathematical and computational tools we can identify the underlying pathways to toxicity. These computational models will enable us to discover a set of genes and metabolites that can be highly predictive of an adverse impact on living organisms and at the same time provide a characteristic fingerprint of the type of pollutant class(es) responsible for such impact. We will study these effects in the water flea (Daphnia magna) which is already commonly used in the testing of contaminated water samples for toxicity. A wide range of chemicals representing major pollutant classes will be assessed and the molecular signatures will be compared to physiological responses in the water fleas. This will allow us to discover molecular signatures that have high diagnostic value in an ecological context, specifically telling us about the health and reproductive fitness of the water fleas. Also, the computational methods will allow us to discover molecular signatures that causally relate to the water fleas' health. This represents a major advance over current molecular biomarkers.Once these characteristic fingerprints of molecules that are predictive of different toxicities are established, we will test such fingerprints to be predictive of the chemical makeup of water samples taken from polluted environments and with proven environmental impact. Such sampling will be in collaboration with our project partner, the Environment Agency. We will be "blinded" to the nature of these samples, enabling a robust evaluation of our ability to (1) determine the "ecological status" of the water and (2) diagnose the underlying pollutant class, thus enhancing the regulators' ability to target remedial measures. Following this validation of the new predictive biomarkers we will convert them into simple, rapid and economic assays, resulting in the provision of a new generation of environmental monitoring tools. After the project, and through our collaborations with end-users in the UK, Europe and North America, we will seek to pilot our molecular biomarkers alongside conventional biological and chemical monitoring, e.g. as part of the Water Framework Directive. In summary, this exciting project is interdisciplinary, involving fundamental biochemistry and physiology, toxicology, molecular biology and bioinformatics, and promises a significant advance in the tools available to monitor the health of our environment.
监测环境中化学污染的不利影响对维护生物多样性和环境健康至关重要。这对水生环境尤其重要,因为各种污染物都流入水生环境,例如农药径流、工业溢漏和未经处理的污水排放产生的过量营养物。污染仍然是英国的一个主要问题,环境署估计,多达82%的河流受到硝酸盐和磷等化学物质的“威胁”。这些污染物的不利影响往往只有在其严重程度足以影响到生物体的生存,因而在损害发生后的较晚阶段才能查明时才能查明。已经尝试使用早期变化的更敏感的分子指标(“生物标志物”),但这些通常仅告知化学品暴露的水平,并且在毒性方面具有有限的诊断或预测能力。因此,分子生物标志物在环境监测中的应用非常有限,受到最近生物医学技术的巨大成功的启发,我们提出在环境背景下开发一个等效的生物标志物发现系统,即,开发生物标志物,用于环境监测和诊断。这些技术可以测量暴露生物体中的数千种生化物质(包括基因产物和代谢物),通过使用数学和计算工具,我们可以确定潜在的毒性途径。这些计算模型将使我们能够发现一组基因和代谢物,这些基因和代谢物可以高度预测对生物体的不利影响,同时提供造成这种影响的污染物类别的特征指纹。我们将在水蚤(大型水蚤)中研究这些影响,水蚤已被普遍用于测试受污染的水样的毒性。将评估代表主要污染物类别的各种化学品,并将分子特征与水蚤的生理反应进行比较。这将使我们能够发现在生态环境中具有高诊断价值的分子特征,特别是告诉我们水蚤的健康和生殖健康。此外,计算方法将使我们能够发现与水蚤健康有因果关系的分子特征。这代表了当前分子生物标志物的一个重大进步。一旦建立了这些预测不同毒性的分子特征指纹,我们将测试这些指纹,以预测从污染环境中采集的水样的化学组成,并证明对环境的影响。这种取样将与我们的项目伙伴环境署合作进行。我们将对这些样本的性质“不知情”,从而能够对我们的能力进行强有力的评估,以(1)确定水的“生态状况”,(2)诊断潜在的污染物类别,从而提高监管机构采取补救措施的能力。在验证了新的预测生物标志物之后,我们将把它们转化为简单、快速和经济的检测方法,从而提供新一代的环境监测工具。项目结束后,通过与英国、欧洲和北美的最终用户合作,我们将寻求在常规生物和化学监测的同时试点我们的分子生物标志物,例如作为水框架指令的一部分。总之,这个令人兴奋的项目是跨学科的,涉及基础生物化学和生理学,毒理学,分子生物学和生物信息学,并承诺在可用于监测我们环境健康的工具方面取得重大进展。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment.
- DOI:10.1093/toxsci/kfx097
- 发表时间:2017-08-01
- 期刊:
- 影响因子:0
- 作者:Brockmeier EK;Hodges G;Hutchinson TH;Butler E;Hecker M;Tollefsen KE;Garcia-Reyero N;Kille P;Becker D;Chipman K;Colbourne J;Collette TW;Cossins A;Cronin M;Graystock P;Gutsell S;Knapen D;Katsiadaki I;Lange A;Marshall S;Owen SF;Perkins EJ;Plaistow S;Schroeder A;Taylor D;Viant M;Ankley G;Falciani F
- 通讯作者:Falciani F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesco Falciani其他文献
Transcriptomic responses of European flounder (<em>Platichthys flesus</em>) to model toxicants
- DOI:
10.1016/j.aquatox.2008.07.019 - 发表时间:
2008-11-11 - 期刊:
- 影响因子:
- 作者:
Tim D. Williams;Amer Diab;Fernando Ortega;Victoria S. Sabine;Rita E. Godfrey;Francesco Falciani;J. Kevin Chipman;Stephen G. George - 通讯作者:
Stephen G. George
Explorer Regulators encoded in the Escherichia coli type III secretion system 2 gene cluster influence expression of genes within the locus for enterocyte effacement in enterohemorrhagic E . coli O 157 : H 7
大肠杆菌 III 型分泌系统 2 基因簇中编码的探索者调节因子影响肠出血性大肠杆菌中肠细胞消失基因座内的基因表达。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lihong Zhang;R. Chaudhuri;C. Constantinidou;Jon L. Hobman;Mala D. Patel;Antony C. Jones;Donatella Sarti;Andrew J. Roe;Isabella Vlisidou;R. Shaw;Francesco Falciani;Mark P. Stevens;D. Gally;S. Knutton;G. Frankel;Charles W. Penn;M. Pallen - 通讯作者:
M. Pallen
Metabolomic Analysis of Human Vitreous Humor Differentiates Ocular Inflammatory Disease
人类玻璃体液的代谢组学分析可区分眼部炎症疾病
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Stephen P. Young;Francesco Falciani;Victor Trevino;Somnath P Banerjee;Robert A H Scott;Philip I Murray;Graham R. Wallace;Graham R. Wallace - 通讯作者:
Graham R. Wallace
Francesco Falciani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesco Falciani', 18)}}的其他基金
Towards predictive biology: using stress responses in a bacterial pathogen to link molecular state to phenotype
迈向预测生物学:利用细菌病原体的应激反应将分子状态与表型联系起来
- 批准号:
BB/K019546/1 - 财政年份:2013
- 资助金额:
$ 75.37万 - 项目类别:
Research Grant
A Systems Biology Platform for Predictive Ecotoxicology in Daphnia magna
大型溞预测生态毒理学的系统生物学平台
- 批准号:
NE/I028246/2 - 财政年份:2012
- 资助金额:
$ 75.37万 - 项目类别:
Research Grant
Modelling the Gene Regulatory Network underlying Lineage Commitment in Human Mesenchymal Stem Cells (LINCONET)
人类间充质干细胞谱系定型的基因调控网络建模 (LINCONET)
- 批准号:
BB/I004556/1 - 财政年份:2010
- 资助金额:
$ 75.37万 - 项目类别:
Research Grant
High Throughput Systems Biology Analysis Modelling and Stimulation of Large Biological Data Sets
高通量系统生物学分析建模和大型生物数据集的模拟
- 批准号:
BB/D524624/1 - 财政年份:2007
- 资助金额:
$ 75.37万 - 项目类别:
Research Grant
相似国自然基金
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
The Virtual Platelet Platform ViPP: An Images and Systems Biology data repository and workbench (INF)
虚拟血小板平台 ViPP:图像和系统生物学数据存储库和工作台 (INF)
- 批准号:
406544357 - 财政年份:2018
- 资助金额:
$ 75.37万 - 项目类别:
CRC/Transregios
Developing a systems biology platform for predicting, preventing, and treating drug side effects
开发用于预测、预防和治疗药物副作用的系统生物学平台
- 批准号:
9922312 - 财政年份:2016
- 资助金额:
$ 75.37万 - 项目类别:
Developing an integrated systems and synthetic biology platform to expand the product spectrum of acetogens
开发集成系统和合成生物学平台以扩大产乙酸剂的产品范围
- 批准号:
LP140100213 - 财政年份:2015
- 资助金额:
$ 75.37万 - 项目类别:
Linkage Projects
A Platform for the CHO Biomanufacturing Systems Biology Community
CHO 生物制造系统生物学界的平台
- 批准号:
1412365 - 财政年份:2014
- 资助金额:
$ 75.37万 - 项目类别:
Standard Grant
A bioanalytical platform for interrogating the systems biology of tRNA modifications: Application to defining translational control mechanisms in bacterial stress responses
用于探究 tRNA 修饰的系统生物学的生物分析平台:应用于定义细菌应激反应中的翻译控制机制
- 批准号:
1308839 - 财政年份:2013
- 资助金额:
$ 75.37万 - 项目类别:
Standard Grant
A Systems Biology Platform for Predictive Ecotoxicology in Daphnia magna
大型溞预测生态毒理学的系统生物学平台
- 批准号:
NE/I028246/2 - 财政年份:2012
- 资助金额:
$ 75.37万 - 项目类别:
Research Grant
SIFTER: A Systems Biology Platform for Protein Function Prediction
SIFTER:蛋白质功能预测的系统生物学平台
- 批准号:
1122732 - 财政年份:2011
- 资助金额:
$ 75.37万 - 项目类别:
Fellowship Award
A Systems Biology Platform for the Assessment of Substance Abuse
用于评估药物滥用的系统生物学平台
- 批准号:
7802785 - 财政年份:2010
- 资助金额:
$ 75.37万 - 项目类别:
CRI II-New: Data-Parallel Platform for Large-Scale Simulation of Agent-Based Models in Systems Biology
CRI II-新:系统生物学中基于代理的模型大规模模拟的数据并行平台
- 批准号:
0855107 - 财政年份:2009
- 资助金额:
$ 75.37万 - 项目类别:
Standard Grant
CRI II-New: Data-Parallel Platform for Large-Scale Simulation of Agent-Based Models in Systems Biology
CRI II-新:系统生物学中基于代理的模型大规模模拟的数据并行平台
- 批准号:
0968519 - 财政年份:2009
- 资助金额:
$ 75.37万 - 项目类别:
Standard Grant














{{item.name}}会员




