Ocean circulation and melting beneath the ice shelves of the south-eastern Amundsen Sea
阿蒙森海东南部冰架下的海洋环流和融化
基本信息
- 批准号:NE/J005630/1
- 负责人:
- 金额:$ 24.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sea levels around the world are currently rising, threatening coastal populations with flooding and increased erosion, and evaluating the future threat requires an ability to forecast changes in sea level. To do this we must understand what is happening to the Earth's great reservoirs of freshwater, and whether or not they are slowly draining into the ocean. The largest of these reservoirs by far is the Antarctic Ice Sheet, which contains 70% of all the freshwater on the planet, and we know that parts of the ice sheet are thinning. The fastest changes are happening near the edge of the ice sheet, where it flows into the sea in a place called Pine Island Bay, and the speed of the changes has taken scientists by surprise.Pine Island Bay is geographically the far south of the Pacific Ocean, and the image of warmth that this conjures up is not entirely misplaced. The air temperatures never rise above freezing, but beneath the cold surface of the sea, water temperatures rise as high as 1 degree Celcius, well above the freezing point. Pine Island Glacier is a vast river of ice that flows out into Pine Island Bay, carrying as much water as the River Rhine in frozen form. The last 60 km of the Glacier floats on the waters of Pine Island Bay, and the bottom melts so intensely that half of the ice carried in the glacier is lost within the space of 30 years. It is not hard to understand that warm water causes rapid melting, but what do "warm" and "rapid" really mean? If we change the water temperature by a small amount, by how much will the melt rate change? And critically, what might cause the ocean temperature to change?To find the answers to those questions we must make measurements of the water temperature beneath the glacier, and simultaneous measurements of the rate at which the base of the glacier is melting into the ocean, but to do so is enormously challenging. The glacier is between 300 m and 1 km thick, so it is difficult to access its base. The key is cutting-edge technology, in the form a robotic submarine capable of diving beneath the ice, making measurements along a pre-defined track, then returning to the surface with the data, and a set of rugged, autonomous radar systems that can left on the glacier's surface throughout the Antarctic winter precisely measuring the rate at which the thickness of the ice changes.The robot submarine has been designed and built by NERC engineers and has already proved itself on preliminary missions beneath Pine Island Glacier in 2009. The radar systems will be developed as part of this project. They will combine a well-known radar technique, FMCW radar, with careful measurement of the phase of the return echoes to establish the position of unique features in the image, such as the bottom of the glacier, with very high precision of the order of 1 mm over a 1 km range. Four of these radar instruments will be left on the surface of Pine Island Glacier, engineered to allow year-round autonomous operation and monitoring of the gradual change of ice thickness with time. Armed with the data from these new instruments we will use a computer model that describes the flow of water within the remote cavern beneath the glacier and in the sea to the north of it. Using this model we will determine how heat that is transported into the cavern by ocean currents is used to melt the ice shelf and what impact changes in the climate of this part of Antarctic will have on the ocean currents and resulting melt rates. This information will allow others to assess with greater certainty how future climate change will impact the glaciers of Pine Island Bay and hence how this remote part of the world will influence the future coastlines of places such as Holland and East Anglia.
世界各地的海平面目前正在上升,洪水和侵蚀加剧威胁着沿海人口,评估未来的威胁需要预测海平面变化的能力。要做到这一点,我们必须了解地球上巨大的淡水水库正在发生什么,以及它们是否正在慢慢排入海洋。到目前为止,这些水库中最大的是南极冰盖,它包含了地球上70%的淡水,我们知道部分冰盖正在变薄。最快的变化发生在冰盖的边缘,在那里,它流入大海,在一个叫松岛湾的地方,变化的速度让科学家们感到惊讶。松岛湾在地理上位于太平洋的最南端,这让人联想到温暖的形象并不完全错位。空气温度从未超过冰点,但在寒冷的海面下,水温上升高达1摄氏度,远高于冰点。松岛冰川是一条巨大的冰河,流入松岛湾,携带的水量与冰冻状态的莱茵河相当。最后60公里的冰川漂浮在松岛湾的沃茨上,底部融化得如此剧烈,以至于冰川中一半的冰在30年内消失了。暖水导致快速融化并不难理解,但“暖”和“快速”到底是什么意思呢?如果我们稍微改变水温,融化速率会改变多少?关键的是,什么可能导致海洋温度的变化?为了找到这些问题的答案,我们必须测量冰川下的水温,同时测量冰川底部融化到海洋中的速度,但这样做是非常具有挑战性的。冰川厚度在300米到1公里之间,因此很难进入其底部。关键是尖端技术,形式是一个机器人潜艇能够潜入冰下,沿沿着预定义的轨道进行测量,然后带着数据返回水面,以及一套坚固的,自动雷达系统可以在整个南极冬季留在冰川表面,精确测量冰层厚度变化的速度。机器人潜艇是由NERC的工程师已经在2009年松岛冰川下的初步任务中证明了自己。雷达系统将作为该项目的一部分开发。他们将把联合收割机一种著名的雷达技术-FMCW雷达与仔细测量返回回波的相位结合起来,以确定图像中独特特征的位置,如冰川底部,其精度非常高,在1公里范围内达到1毫米的量级。其中四个雷达仪器将留在松岛冰川的表面,设计成允许全年自主操作和监测冰厚度随时间的逐渐变化。有了这些新仪器的数据,我们将使用一个计算机模型来描述冰川下偏远洞穴和冰川以北海洋中的水流。利用这个模型,我们将确定洋流输送到洞穴中的热量如何用于融化冰架,以及南极这一地区的气候变化将对洋流产生什么影响,并导致熔化速率这些信息将使其他人能够更确定地评估未来气候变化将如何影响松岛湾的冰川,从而评估世界上这个偏远地区将如何影响荷兰和东安格利亚等地未来的海岸线。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient path estimation through parallel media for wide-beam ice-sounding radar
通过并行介质进行宽波束冰探雷达的有效路径估计
- DOI:10.1049/iet-rsn.2019.0406
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Arenas-Pingarrón Á
- 通讯作者:Arenas-Pingarrón Á
Design of an HF-VHF Ice Penetrating Synthetic Aperture Radar
HF-VHF透冰合成孔径雷达设计
- DOI:10.1109/ims37962.2022.9865374
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hawkins J
- 通讯作者:Hawkins J
Variability in Basal Melting Beneath Pine Island Ice Shelf on Weekly to Monthly Timescales
- DOI:10.1029/2018jc014464
- 发表时间:2018-11-01
- 期刊:
- 影响因子:3.6
- 作者:Davis, Peter E. D.;Jenkins, Adrian;Kim, Tae-Wan
- 通讯作者:Kim, Tae-Wan
Development of a VHF Transponder for Geological Monitoring of Boreholes Drilled Through Ice Sheets using phase-sensitive FMCW Radar
开发 VHF 应答器,用于使用相敏 FMCW 雷达对冰盖钻孔进行地质监测
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Amiri, A
- 通讯作者:Amiri, A
An Improved RHCP Archimedean Spiral Antenna for Glacial Environmental Sensor Networks
用于冰川环境传感器网络的改进 RHCP 阿基米德螺旋天线
- DOI:10.1109/isap53582.2022.9998827
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hashmi M
- 通讯作者:Hashmi M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Brennan其他文献
Abstracts from the Tenth Annual Meeting of the International Genetic Epidemiology Society
国际遗传流行病学学会第十届年会摘要
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Sarah J. Lewis;Paul Brennan;Fredrik Nyberg;W. Ahrens;V. Constantinescu;A. Mukeria;S. Benhamou;H. Batura;I. Bruske;L. Simonato;Ana M. B. Menezes;Paolo Boffetta - 通讯作者:
Paolo Boffetta
Key Molecular Drivers of Chronic Lymphocytic Leukaemia (CLL)
慢性淋巴细胞白血病 (CLL) 的关键分子驱动因素
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
S. Alsagaby;Paul Brennan;Chris Pepper - 通讯作者:
Chris Pepper
Tophaceous gout of the lumbar spine in a renal transplant patient: a case report and literature review.
肾移植患者腰椎痛风石症:病例报告及文献复习。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:3.3
- 作者:
Frank J. Thornton;W. C. Torreggiani;Paul Brennan - 通讯作者:
Paul Brennan
Consumption of Minimally Processed Foods as Protective Factors in the Genesis of Squamous Cell Carcinoma of the Head and Neck in Brazil (P05-032-19)
- DOI:
10.1093/cdn/nzz030.p05-032-19 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:
- 作者:
Olívia Galvão-Podestá;Maria Curado;Stela Peres;Luciane Salaroli;Monica Cattafesta;José Roberto Vasconcelos De Podestá;Sandra VV Zeidler;José de Oliveira;Luiz Paulo Kowalski;Mauro Kasuo Ikeda;Paul Brennan - 通讯作者:
Paul Brennan
Genome-wide association study identifies novel breast cancer susceptibility
全基因组关联研究确定了新的乳腺癌易感性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
D. Easton;K. Pooley;A. Dunning;Paul D. P. Pharoah;D. Thompson;D. Ballinger;Jeff P Struewing;J. Morrison;Helen Field;Robert Luben;N. Wareham;Shahana Ahmed;C. Healey;Richard Bowman;Kerstin B. Meyer;C. Haiman;Laurence Kolonel;B. E. Henderson;L. Marchand;Paul Brennan;S. Sangrajrang;V. Gaborieau;F. Odefrey;Chen;Pei‐Ei Wu;Hui;D. Eccles;D. Evans;Julian Peto;O. Fletcher;N. Johnson;S. Seal;Michael R. Stratton;Nazneen Rahman;G. Chenevix;S. Bojesen;B. Nordestgaard;C. K. Axelsson;M. García;L. Brinton;S. Chanock;J. Lissowska;B. Pepłońska;H. Nevanlinna;R. Fagerholm;H. Eerola;Daehee Kang;K. Yoo;Dong;Se;D. J. Hunter;S. Hankinson;David G. Cox;S. Wedrén;Jianjun Liu;Yen Ling Low;N. Bogdanova;Peter Schürmann;T. Dörk;R. Tollenaar;C. Jacobi;P. Devilee;J. Klijn;A. Sigurdson;M. Doody;Bruce H. Alexander;Jinghui Zhang;Angela Cox;I. Brock;Gordon MacPherson;M. W. Reed;F. Couch;E. Goode;J. Olson;H. Meijers;A. V. D. Ouweland;A. Uitterlinden;F. Rivadeneira;R. Milne;Gloria Ribas;A. González;Javier Benítez;J. Hopper;Margaret McCredie;Melissa S Southey;G. Giles;C. P. G. H. Schroen;Christina Justenhoven;H. Brauch;U. Hamann;Y. Ko;A. Spurdle;J. Beesley;Xiaoqing Chen;A. Group;A. Mannermaa;V. Kosma;V. Kataja;Jaana M. Hartikainen;Nicholas E. Day;David R Cox;B. A. Ponder;C. Luccarini;Don M. Conroy;M. Shah;Hannah Munday;C. Jordan;B. Perkins;Judy West;Karen Redman;K. Driver;The Search;D. Amor;Lesley Andrews;Y. Antill;J. Armes;Shane Armitage;Leanne Arnold;Rosemary L. Balleine;Glenn Begley;John A. Beilby;Ian Bennett;Barbara Bennett;Geoffrey Berry;Anneke Blackburn;Meagan Brennan;Melissa Brown;Michael Buckley;J. Burke;Phyllis N. Butow;Keith Byron;David F. Callen;Ian Campbell;Christine L. Clarke;Alison Colley;Dick Cotton;Jisheng Cui;Bronwyn Culling;Margaret Cummings;Sarah;J. Dixon;Alexander Dobrovic;Tracy Dudding;Ted Edkins;M. Eisenbruch;G. Farshid;Susan Fawcett;Michael Field;F. Firgaira;Jean Fleming;John F Forbes;Michael Friedlander;Clara Gaff;Mac Gardner;M. Gattas;Peter George;G. Gill;Jack Goldblatt;Sian Greening;S. Grist;Eric Haan;Marion Harris;Stewart Hart;N. Hayward;Evelyn Humphrey;Mark A. Jenkins;Alison Jones;R. Kefford;Judy Kirk;James Kollias;Sergey Kovalenko;S. Lakhani;Jennifer Leary;Jacqueline Lim;Geoff Lindeman;Lara Lipton;Lizz Lobb;Mariette Maclurcan;G. Bruce Mann;Deb Marsh;Michael McKay;Sue;Bettina Meiser;Gillian Mitchell;Beth Newman;Imelda O’Loughlin;Richard Osborne;Lester Peters;K. Phillips;Melanie Price;Jeanne Reeve;Tony Reeve;Robert Richards;Gina Rinehart;Bridget Robinson;Barney Rudzki;Elizabeth Salisbury;J. Sambrook;Christobel Saunders;C. Scott;Elizabeth Scott;Rodney J. Scott;R. Seshadri;Andrew Shelling;Graeme Suthers;Donna Taylor;Christopher Tennant;Heather Thorne;S. Townshend;Kathy Tucker;Janet Tyler;D. Venter;J. Visvader;Ian Walpole;Robin Ward;Paul Waring;Bev Warner;Graham Warren;Elizabeth Watson;Rachael Williams;Judy Wilson;Ingrid Winship;M. A. Young;D. Bowtell;Adele Green;87 AnnadeFazio;D. Gertig;P. Webb - 通讯作者:
P. Webb
Paul Brennan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Brennan', 18)}}的其他基金
NSFPLR-NERC: Melting at Thwaites grounding zone and its control on sea level (THWAITES-MELT)
NSFPLR-NERC:思韦茨接地区的融化及其对海平面的控制(THWAITES-MELT)
- 批准号:
NE/S006761/1 - 财政年份:2018
- 资助金额:
$ 24.21万 - 项目类别:
Research Grant
Ice shelves in a warming world: Filchner Ice Shelf system, Antarctica
变暖世界中的冰架:南极洲菲尔希纳冰架系统
- 批准号:
NE/L013444/1 - 财政年份:2015
- 资助金额:
$ 24.21万 - 项目类别:
Research Grant
Advanced MIMO Radar Development for Geophysical Imaging Applications
用于地球物理成像应用的先进 MIMO 雷达开发
- 批准号:
EP/K00767X/1 - 财政年份:2013
- 资助金额:
$ 24.21万 - 项目类别:
Research Grant
Field-ready phase-sensitive radio-echosounder, for ice shelf melt rate measurement
现场就绪相敏无线电回声测深仪,用于冰架融化速率测量
- 批准号:
NE/I000623/1 - 财政年份:2011
- 资助金额:
$ 24.21万 - 项目类别:
Research Grant
Geophysical flow dynamics using pulsed Doppler radar
使用脉冲多普勒雷达的地球物理流动力学
- 批准号:
NE/F004621/1 - 财政年份:2008
- 资助金额:
$ 24.21万 - 项目类别:
Research Grant
Advanced synthesiser techniques for mobile communications.
用于移动通信的先进合成器技术。
- 批准号:
EP/D05012X/1 - 财政年份:2006
- 资助金额:
$ 24.21万 - 项目类别:
Research Grant
相似国自然基金
GPSM1介导Ca2+循环-II型肌球蛋白网络调控脂肪产热及代谢稳态的机制研究
- 批准号:82370879
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Designing a targeted 'super adjuvant' nanoparticle platform for vaccination
设计用于疫苗接种的靶向“超级佐剂”纳米颗粒平台
- 批准号:
10647117 - 财政年份:2023
- 资助金额:
$ 24.21万 - 项目类别:
The influence of ocean circulation on local biogeochemistry and melting tidewater glaciers in northern Baffin Bay
海洋环流对巴芬湾北部当地生物地球化学和潮水冰川融化的影响
- 批准号:
NE/X008304/1 - 财政年份:2022
- 资助金额:
$ 24.21万 - 项目类别:
Research Grant
MMP-deactivating injectable hydrogel for chronic wounds
用于慢性伤口的 MMP 失活注射水凝胶
- 批准号:
10490981 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别:
MMP-deactivating injectable hydrogel for chronic wounds
用于慢性伤口的 MMP 失活注射水凝胶
- 批准号:
10672433 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别:
MMP-deactivating injectable hydrogel for chronic wounds
用于慢性伤口的 MMP 失活注射水凝胶
- 批准号:
10288972 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别:
Simple and rapid POC detection for fungemia
简单快速的真菌血症 POC 检测
- 批准号:
10542776 - 财政年份:2020
- 资助金额:
$ 24.21万 - 项目类别: