Markerless Motion Capture for Primate Locomotion Studies
用于灵长类运动研究的无标记运动捕捉
基本信息
- 批准号:NE/J012556/1
- 负责人:
- 金额:$ 4.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Humans are unique in the way they move since we are the only animal that is able to walk on fully straight legs. We think that this feature occurred very soon after the human lineage split off from the chimpanzee lineage so that understanding how we came to move the way we do will help us understand how this split occurred. To understand the evolution of human walking and running we need to also know about how our nearest relatives walk and run and that has led to many researchers studying non-human primate locomotion. The commonest approach is simply to use a video camera and film what the animal is doing. However in practice there are many difficulties with this technique. To take measurements from video film either requires us to put reflective markers on the study animal which is usually simply not possible, or the individual frames need be measured individually by a skilled researcher estimating where the primate's joints are. This is not very accurate because often the joint positions are obscured by hair. Often we want to understand what is happening in 3D since primates spend a lot of time in the trees and their movements are very complex and this is particularly difficult to quantify from simple video analysis. Fortunately in the last few years computer technology has advanced to such an extent that we can reconstruct three-dimensional shape from a series of photographs as long as they overlap. This stereo reconstruction works by identifying common features in much the same way that the stereoscopic vision works in our eyes. With high definition video it is therefore possible to extract the skin outline of a subject animal in 3D. This is only half the battle since what we really want to know is how the skeleton is moving underneath the skin. Fortunately we also have accurate 3D models of the skeleton obtained from CT scans that can be fitted within the skin envelope and this should give us the information we require. The purpose of this project is to test the effectiveness of this new approach. We can compare the results we obtain using the new technique against those we obtain using a range of alternative standard techniques. By using trained monkeys in controlled conditions as our study animals we can even use the very accurate marker based systems as a 'gold-standard' reference to identify what the limitations of the new technique are, and by trying the technique on a range of different animals we can see whether features of the fur such as hair-length or colour cause any problems. The ultimate goal is to produce a much better technique for studying primate locomotion that will greatly reduce the effort required whilst at the same time producing better results. This improved data is necessary to allow us to understand the full complexity of the evolution of the way modern humans move and how we differ from our nearest relatives among the primates.
人类是独一无二的,因为我们是唯一一种能够完全直立行走的动物。我们认为,这种特征发生在人类谱系从黑猩猩谱系中分离出来之后不久,因此,了解我们如何以我们的方式移动将有助于我们了解这种分离是如何发生的。为了了解人类行走和奔跑的进化,我们还需要了解我们最近的亲戚是如何行走和奔跑的,这导致了许多研究人员研究非人类灵长类动物的运动。最常见的方法是简单地使用摄像机和电影的动物正在做什么。然而,在实践中,这种技术存在许多困难。从视频电影中进行测量要么需要我们在研究动物身上放置反射标记,这通常是不可能的,要么需要由熟练的研究人员单独测量各个帧,估计灵长类动物的关节在哪里。这不是很准确,因为关节位置经常被头发遮挡。我们通常想了解3D中发生了什么,因为灵长类动物在树上花了很多时间,它们的运动非常复杂,这特别难以通过简单的视频分析来量化。幸运的是,在过去的几年里,计算机技术已经发展到这样一个程度,我们可以从一系列照片中重建三维形状,只要它们重叠。这种立体重建的工作原理是识别共同特征,与我们眼睛中的立体视觉工作原理大致相同。因此,利用高清晰度视频,可以以3D方式提取对象动物的皮肤轮廓。这只是成功的一半,因为我们真正想知道的是骨骼是如何在皮肤下移动的。幸运的是,我们也有从CT扫描中获得的骨骼的精确3D模型,这些模型可以安装在皮肤包膜内,这应该会给我们提供我们需要的信息。本项目的目的是测试这种新方法的有效性。我们可以将使用新技术获得的结果与使用一系列替代标准技术获得的结果进行比较。通过在受控条件下使用经过训练的猴子作为我们的研究动物,我们甚至可以使用非常准确的基于标记的系统作为“黄金标准”参考,以确定新技术的局限性,并通过在一系列不同的动物上尝试该技术,我们可以看到毛发长度或颜色等特征是否会引起任何问题。最终目标是产生一种更好的研究灵长类动物运动的技术,这将大大减少所需的努力,同时产生更好的结果。这些改进的数据是必要的,使我们能够理解现代人类移动方式进化的全部复杂性,以及我们与灵长类动物中最近的亲属有何不同。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Markerless 3D motion capture for animal locomotion studies.
- DOI:10.1242/bio.20148086
- 发表时间:2014-06-27
- 期刊:
- 影响因子:2.4
- 作者:Sellers WI;Hirasaki E
- 通讯作者:Hirasaki E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Sellers其他文献
Correction: Acquired Spinal Conditions in Evolutionary Perspective: Updating a Classic Hypothesis
- DOI:
10.1007/s13752-022-00411-3 - 发表时间:
2022-08-29 - 期刊:
- 影响因子:1.900
- 作者:
Mark Collard;Kimberly A. Plomp;Keith M. Dobney;Morgane Evin;Ella Been;Kanna Gnanalingham;Paulo Ferreira;Milena Simic;William Sellers - 通讯作者:
William Sellers
BILATERAL FORCES AND MOMENTS IN LATERAL SIDESTEPPING AND CROSSOVER STEPPING TASKS
- DOI:
10.1016/s0021-9290(08)70025-3 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:
- 作者:
Gregor Kuntze;William Sellers - 通讯作者:
William Sellers
The Use of Robotics in Colorectal Surgery
机器人技术在结直肠手术中的应用
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
B. Protyniak;T. Erchinger;William Sellers;Anjuli M. Gupta;Gordian U. Ndubizu;Kelly Johnson - 通讯作者:
Kelly Johnson
Biomechanics and the origins of human bipedal walking: The last 50 years.
生物力学和人类双足行走的起源:过去 50 年。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.4
- 作者:
R. Crompton;William Sellers;K. Davids;J. McClymont - 通讯作者:
J. McClymont
ニホンザルのロコモーション時における手掌圧分布の分析
日本猕猴运动时手掌压力分布分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
平崎鋭矢;William Sellers - 通讯作者:
William Sellers
William Sellers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Sellers', 18)}}的其他基金
The co-evolution of human hands and tool using behaviour
人手与工具使用行为的共同进化
- 批准号:
NE/R011168/1 - 财政年份:2018
- 资助金额:
$ 4.63万 - 项目类别:
Research Grant
First steps: the mechanics and control of velocity change in humans
第一步:人体速度变化的机制和控制
- 批准号:
BB/K006029/1 - 财政年份:2013
- 资助金额:
$ 4.63万 - 项目类别:
Research Grant
Hominoid energetics: could load carriage have driven the early adoption of bipedal locomotion in human evolution?
类人猿能量学:负载运输是否会推动人类进化中双足运动的早期采用?
- 批准号:
NE/C520447/1 - 财政年份:2006
- 资助金额:
$ 4.63万 - 项目类别:
Research Grant
Hominoid energetics: could load carriage have driven the early adoption of bipedal locomotion in human evolution?
类人猿能量学:负载运输是否会推动人类进化中双足运动的早期采用?
- 批准号:
NE/C520463/1 - 财政年份:2006
- 资助金额:
$ 4.63万 - 项目类别:
Research Grant
Climate Modeling and Diagnostic Research
气候建模和诊断研究
- 批准号:
8619467 - 财政年份:1987
- 资助金额:
$ 4.63万 - 项目类别:
Standard Grant
Climate Modeling and Diagnostic Research
气候建模和诊断研究
- 批准号:
8203509 - 财政年份:1982
- 资助金额:
$ 4.63万 - 项目类别:
Continuing Grant
A Two-Dimensional Global Climatic Model
二维全球气候模型
- 批准号:
7519742 - 财政年份:1975
- 资助金额:
$ 4.63万 - 项目类别:
Standard Grant
相似海外基金
Smartphone Application-Based Markerless Motion Capture and Biomechanical Analysis of Athletes using a Deep Learning Model
使用深度学习模型对运动员进行基于智能手机应用的无标记动作捕捉和生物力学分析
- 批准号:
486618 - 财政年份:2022
- 资助金额:
$ 4.63万 - 项目类别:
Studentship Programs
SBIR Phase II: 3D Markerless Motion Capture Technology For Gait Analysis
SBIR 第二阶段:用于步态分析的 3D 无标记运动捕捉技术
- 批准号:
2153138 - 财政年份:2022
- 资助金额:
$ 4.63万 - 项目类别:
Cooperative Agreement
Developing a markerless motion capture framework for the human back using Artificial Intellegence
使用人工智能开发人体背部无标记动作捕捉框架
- 批准号:
574508-2022 - 财政年份:2022
- 资助金额:
$ 4.63万 - 项目类别:
University Undergraduate Student Research Awards
Markerless motion capture equipment for the development of a multi-centre biomechanical analysis tool
用于开发多中心生物力学分析工具的无标记动作捕捉设备
- 批准号:
RTI-2022-00451 - 财政年份:2021
- 资助金额:
$ 4.63万 - 项目类别:
Research Tools and Instruments
Biomechanics from markerless motion capture: Application to robotic surgery
无标记动作捕捉的生物力学:在机器人手术中的应用
- 批准号:
546103-2020 - 财政年份:2021
- 资助金额:
$ 4.63万 - 项目类别:
Postdoctoral Fellowships
Advancing the measurement of motion in sport using markerless motion capture technology
使用无标记动作捕捉技术推进运动测量
- 批准号:
RTI-2022-00209 - 财政年份:2021
- 资助金额:
$ 4.63万 - 项目类别:
Research Tools and Instruments
Determining the repeatability of markerless motion capture for measuring human motion
确定用于测量人体运动的无标记运动捕捉的可重复性
- 批准号:
551326-2020 - 财政年份:2020
- 资助金额:
$ 4.63万 - 项目类别:
University Undergraduate Student Research Awards
Markerless motion capture for automated evaluation of clinical assessments
用于临床评估自动评估的无标记动作捕捉
- 批准号:
551327-2020 - 财政年份:2020
- 资助金额:
$ 4.63万 - 项目类别:
University Undergraduate Student Research Awards
SBIR Phase I: 3D Markerless Motion Capture Technology For Gait Analysis During Rehabilitation
SBIR 第一阶段:用于康复期间步态分析的 3D 无标记运动捕捉技术
- 批准号:
2014869 - 财政年份:2020
- 资助金额:
$ 4.63万 - 项目类别:
Standard Grant
Biomechanics from markerless motion capture: Application to robotic surgery
无标记动作捕捉的生物力学:在机器人手术中的应用
- 批准号:
546103-2020 - 财政年份:2020
- 资助金额:
$ 4.63万 - 项目类别:
Postdoctoral Fellowships