How do palaeontological data refine our understanding of adaptive radiation and the evolution of modern biodiversity?

古生物学数据如何完善我们对适应性辐射和现代生物多样性进化的理解?

基本信息

  • 批准号:
    NE/J021911/1
  • 负责人:
  • 金额:
    $ 2.77万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Swordfishes, needle-nosed predators of the high seas; flounders, gastronomically familiar and bizarrely asymmetrical bottom dwellers; remoras, literal hangers-on that hitch rides on sharks using a suction cup on their heads: few fishes, or vertebrates, show more strikingly different anatomies or modes of life. Divergent as they are, genetic studies indicate that these fishes, as well as several others with equally curious traits, are all closely related, forming a bough in the tree of life called Carangimorpha. Cases like this, where organisms with shared ancestry branch out over time to assume divergent bodyplans and lifestyles, are known as adaptive radiations. Previous research on this topic has focused on living groups with poor fossil records, like anole lizards or cichlid fishes. However, fossils are the only direct means of timing evolutionary events, and yield unique evidence of anatomies pruned from the tree of life by extinction; as such, they are critical in understanding how modern biodiversity was assembled. Our project seeks to use this exceptional group of fishes as a laboratory to not only understand how their specialisations arose, but also explore the ways in which fossils can be especially useful for answering these questions. Specifically, we will ask: (1) what are the steps leading to the origin of peculiar carangimorph body 'designs'; (2) when in geological time did these changes occur?; and (3) what do fossils tell us about the speed and manner in which these changes took place? Fossils are critical in answering these questions. For instance, recent discoveries revealed how flatfishes evolved to have both eyes on one side of their head. Finding such transitional forms is typically rare, but the spectacular array of living carangimorphs is complemented by a trove of complete fossils. Modern preparation (involving chemical treatment or methods akin to sandblasting) and imaging (CT scanning) techniques can be used to extract fossils from surrounding rock. We will uncover details of exceptional fossils that document the early stages in the evolution of adaptations of living carangimorphs, including the rapier-like snout of billfishes and the suction disc of remoras. Fossils cannot speak for themselves and we cannot simply trace evolution by peeling back rock layers. We must discover the relationships of fossils to living species. We will combine palaeontological data with anatomy and DNA data from modern fishes to place fossils in a tree alongside living relatives, allowing us reconstruct the sequence of changes leading to specialized modern bodyplans. Including both fossils and living species is also important because fossils can influence estimated relationships among living species and vice versa. To build a timeline for major events in carangimorph evolution, we need to find out when in Earth's history each branch in its family tree split off. Fossilization is a rare event, and so even the oldest fossil of a particular branch might be a relatively late arrival. We therefore need to combine our fossil data with an indirect approach known as the molecular clock. If we know the rate at which genetic mutations build up, we can estimate how long ago living species split from each other and produce a 'time tree': a family tree with an absolute time scale. With all of these components in place, we can address important questions about how fossils impact our understanding of adaptive radiation and the evolution of biodiversity. Our time tree allows us to apply statistical tools for determining the rate at which anatomical features changed over time. This can be used to see whether change was rapid early in evolutionary history or whether it was slow and gradual, and whether rates of evolution varied between marine and freshwater environments. Critically, we will conduct our analyses with and without fossils, allowing us to decide whether studies based only on modern data might be misleading.
剑鱼是公海上长着尖鼻的掠食者;比目鱼是我们在美食上熟悉的、奇怪的不对称的海底生物;鱼是用头上的吸盘搭在鲨鱼身上的真正的食客:很少有鱼类或脊椎动物显示出如此惊人的不同解剖结构或生活方式。尽管它们各不相同,但遗传学研究表明,这些鱼类以及其他几种具有同样奇怪特征的鱼类都是密切相关的,在称为Carangimorpha的生命树中形成了一个树枝。像这样的例子,有着共同祖先的有机体随着时间的推移而出现分支,呈现出不同的体型和生活方式,被称为适应性辐射。以前关于这个主题的研究主要集中在化石记录不佳的生物群体,如变色蜥蜴或慈鲷鱼。然而,化石是确定进化事件时间的唯一直接手段,并产生了通过灭绝从生命之树上修剪下来的解剖学的独特证据;因此,它们对于理解现代生物多样性是如何组装的至关重要。我们的项目旨在利用这一特殊的鱼类群体作为实验室,不仅要了解它们的专业化是如何产生的,还要探索化石如何特别有助于回答这些问题。具体而言,我们将问:(1)导致特殊的carangimorph身体“设计”的起源的步骤是什么?(2)这些变化在地质时代发生了什么?(3)化石告诉我们这些变化发生的速度和方式是什么? 化石对于回答这些问题至关重要。例如,最近的发现揭示了比目鱼是如何进化到两只眼睛都长在头的一边的。发现这种过渡形式通常是罕见的,但壮观的生活carangimorphs阵列是由完整的化石宝库补充。现代的准备(包括化学处理或类似喷砂的方法)和成像(CT扫描)技术可以用来从周围的岩石中提取化石。我们将揭示特殊化石的细节,这些化石记录了活的carangimorphs适应进化的早期阶段,包括长嘴鱼的剑状吻部和鱼的吸盘。 化石不能为自己说话,我们也不能简单地通过剥开岩层来追踪进化。我们必须发现化石与现存物种的关系。我们将联合收割机古生物学数据与现代鱼类的解剖学和DNA数据相结合,将化石放在一棵树上,与活着的亲戚一起,使我们能够重建导致专门的现代体型的变化序列。包括化石和活物种也很重要,因为化石可以影响活物种之间的估计关系,反之亦然。 为了建立一个卡朗吉莫尔夫进化中主要事件的时间轴,我们需要找出地球历史上家谱中每个分支的分裂时间。石化是一个罕见的事件,因此即使是最古老的化石的一个特定的分支可能是一个相对较晚的到来。因此,我们需要联合收割机将化石数据与一种称为分子钟的间接方法结合起来。如果我们知道基因突变的速度,我们就可以估计出物种在多久以前彼此分离,并产生一个“时间树”:一个具有绝对时间尺度的家谱。有了所有这些组件,我们可以解决有关化石如何影响我们对适应性辐射和生物多样性进化的理解的重要问题。我们的时间树使我们能够应用统计工具来确定解剖特征随时间变化的速率。这可以用来观察在进化史的早期变化是迅速的还是缓慢渐进的,以及海洋和淡水环境之间的进化速度是否不同。重要的是,我们将在有化石和没有化石的情况下进行分析,使我们能够决定仅基于现代数据的研究是否可能产生误导。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On fossils, phylogenies and sequences of evolutionary change.
关于化石、系统发育和进化变化的顺序。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zerina Johanson其他文献

Bizarre dermal armour suggests the first African ankylosaur
奇特的表皮甲胄表明这是第一只非洲甲龙
  • DOI:
    10.1038/s41559-021-01553-6
  • 发表时间:
    2021-09-23
  • 期刊:
  • 影响因子:
    14.500
  • 作者:
    Susannah C. R. Maidment;Sarah J. Strachan;Driss Ouarhache;Torsten M. Scheyer;Emily E. Brown;Vincent Fernandez;Zerina Johanson;Thomas J. Raven;Paul M. Barrett
  • 通讯作者:
    Paul M. Barrett

Zerina Johanson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zerina Johanson', 18)}}的其他基金

Gnathostome dental pattern and the evolution of chondrichthyan dentitions
颌口牙齿模式和软骨鱼齿列的进化
  • 批准号:
    NE/K01434X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Research Grant
Teeth and jaws: evolutionary emergence of a model organogenic system and the adaptive radiation of gnathostomes
牙齿和颌:模型器官发生系统的进化出现和颌口动物的适应性辐射
  • 批准号:
    NE/G020264/1
  • 财政年份:
    2009
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Research Grant

相似国自然基金

复合菌剂在高DO下的好氧反硝化脱氮机制及工艺调控研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内生真菌DO14多糖PPF30调控铁皮石斛葡甘聚糖生物合成的机制
  • 批准号:
    LZ23H280001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
  • 批准号:
    92259102
  • 批准年份:
    2022
  • 资助金额:
    60.00 万元
  • 项目类别:
    重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
CD38/cADPR信号通路异常促逼尿肌过度活动(DO)发生的分子机制及干预措施研究
  • 批准号:
    81770762
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
USP2介导RagA去泛素化稳定肿瘤细胞“Do not eat me”信号的机制研究
  • 批准号:
    81773040
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
抑制骨细胞来源Sclerostin蛋白对颌面部DO成骨的协同促进作用
  • 批准号:
    81771104
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
内生真菌DO14促铁皮石斛多糖成分积累的作用机制
  • 批准号:
    31600259
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
末次冰期东亚季风DO事件的定年、转型及亚旋回研究
  • 批准号:
    40702026
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Fellowship
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334517
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Do social environments influence the timing of male maturation in a close human relative?
博士论文研究:社会环境是否影响人类近亲的男性成熟时间?
  • 批准号:
    2341354
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
  • 批准号:
    EP/Z000610/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Research Grant
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
  • 批准号:
    MR/X034100/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Fellowship
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
  • 批准号:
    MR/Y022947/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Research Grant
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
  • 批准号:
    2244690
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Do root microbiomes control seagrass response to environmental stress?
根部微生物组是否控制海草对环境压力的反应?
  • 批准号:
    DP240100566
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Projects
Do oxidative breaks accumulate at gene regulatory regions in disease?
疾病中的基因调控区域是否会积累氧化断裂?
  • 批准号:
    MR/Y000021/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Research Grant
Why Do Breeders Tolerate Non-breeders In Animal Societies?
为什么动物社会中的饲养者容忍非饲养者?
  • 批准号:
    2333286
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了