H+ fluxes in phytoplankton - a mechanistic and modelling study of their physiological roles and impact upon community responses to ocean acidification

浮游植物中的 H 通量 - 其生理作用及其对海洋酸化群落反应影响的机制和模型研究

基本信息

项目摘要

The oceans remove about half of the carbon dioxide (CO2) that we release into the atmosphere and produce about half of the oxygen that we breathe. The photosynthetic marine phytoplankton play a major role in these processes, contributing to global carbon, nitrogen and sulphur cycling. Phytoplankton are not simply single-celled plants. They represent an extremely diverse collection of algae with many novel traits and complex evolutionary histories which are still poorly understood. The increase in atmospheric carbon dioxide due to the burning of fossil fuels has major climatic implications. A result of the oceans absorbing much of this CO2 is the acidification of surface ocean waters - a drop from pH 8.2 to pH 7.7 is predicted by the end of the century. As ocean pH has remained stable for many millions of years this may have profound effects on many marine organisms that have not previously experienced this level of pH or rate of change during their recent evolutionary history. Ocean acidification will also change the levels of carbonate and nutrient ions, all of which may have significant impacts on the physiology of marine phytoplankton. While some of these impacts are being intensively studied, the direct effect of decreased pH itself on phytoplankton physiology has been largely overlooked. Marine phytoplankton, like all organisms, must tightly regulate their cellular pH by in order to maintain favourable conditions for cellular processes. We have been studying mechanisms of pH regulation in coccolithophores, an important group of phytoplankton that play a major role in the global carbon cycle through their production of calcium carbonate scales (coccoliths) which sink to the deep ocean following cell death. We have discovered that coccolithophores use protein pores (channels) in their outer cell membrane to regulate pH inside the cell. These channels allow H+ to exit from the cell whenever acidity in the cell increases, thus acting to keep pH inside the cell constant. This is particularly important for coccolithophores as the production of coccoliths in the cell results in a constant production of H+ which need to be removed or the acidity inside of the cell would increase to dangerous levels. This novel mechanism is extremely sensitive to changes in external pH and may no longer function effectively at near future ocean pH levels. We have also found this form of H+ channel in diatoms, the most numerous and productive group of phytoplankton. Remarkably, we have found that coccolithophore cells acclimated in the laboratory to growth at lower pH no longer appear to use a H+ channel. While this suggests coccolithophores may be able to cope with lower pH, we do not know the wider or long-term physiological implications of this mechanistic switch. This is clearly something we urgently need to understand. This project will examine in detail the mechanisms of pH homeostasis in coccolithophores and diatoms. Our modelling studies predict that mechanisms of cellular pH regulation are likely to differ in large and small phytoplankton species as these will experience greatly different fluctuations in pH at the cell surface due to physical effects of cell size on diffusion at the cell surface. We propose that different mechanisms of pH homeostasis employed by phytoplankton species may play a major role in the response of these organisms to ocean acidification. In order to gauge how these novel aspects of phytoplankton physiology will impact upon marine ecosystems on a broader scale, we will use modelling approaches to examine how cellular H+ fluxes in phytoplankton cells respond to changes in their environment. These mathematical models will enable us to predict the ranges of pH experienced by different phytoplankton species both currently and in the future and will allow us to evaluate their impact on the diversity of natural phytoplankton populations that will be studied in related programmes.
海洋去除了我们释放到大气中的大约一半的二氧化碳(CO2),并产生了我们呼吸的大约一半的氧气。光合作用的海洋浮游植物在这些过程中发挥着重要作用,有助于全球碳、氮和硫的循环。浮游植物不是简单的单细胞植物。它们代表了一个极其多样化的藻类集合,具有许多新的特征和复杂的进化史,这些仍然鲜为人知。燃烧化石燃料导致的大气二氧化碳增加对气候有重大影响。海洋吸收大量二氧化碳的结果是表层海水的酸化--据预测,到本世纪末,酸碱度将从8.2降至7.7。由于海洋酸碱度几百万年来一直保持稳定,这可能对许多海洋生物产生深远影响,这些海洋生物在其最近的进化史上从未经历过这种酸碱度或变化速度。海洋酸化还会改变碳酸盐和营养离子的水平,所有这些都可能对海洋浮游植物的生理产生重大影响。虽然其中一些影响正在被深入研究,但pH降低本身对浮游植物生理学的直接影响在很大程度上被忽视了。海洋浮游植物和所有生物体一样,必须严格调节其细胞的pH值,以维持细胞过程的有利条件。我们一直在研究球藻基团的pH调节机制,球藻基团是一类重要的浮游植物,通过产生碳酸钙鳞片(球藻)在全球碳循环中发挥重要作用,在细胞死亡后沉入深海。我们已经发现,球虫体利用其外细胞膜上的蛋白质孔(通道)来调节细胞内的pH。当细胞中的酸度增加时,这些通道允许H+从细胞中流出,从而保持细胞内的pH恒定。这一点对球藻特别重要,因为球藻在细胞中的产生导致H+的不断产生,需要去除H+,否则细胞内的酸性将增加到危险的水平。这种新的机制对外界pH值的变化极其敏感,在不久的将来海洋pH值水平可能不再有效发挥作用。我们还在硅藻中发现了这种形式的H+通道,硅藻是浮游植物中数量最多、产量最高的一类。值得注意的是,我们发现在实验室中适应低pH生长的球藻细胞似乎不再使用H+通道。虽然这表明球藻生物体可能能够应对较低的pH,但我们不知道这种机械开关的更广泛或长期的生理意义。这显然是我们迫切需要了解的事情。这个项目将详细研究球藻和硅藻中pH动态平衡的机制。我们的模拟研究预测,在大型和小型浮游植物物种中,细胞pH调节的机制可能不同,因为由于细胞大小对细胞表面扩散的物理影响,这些物种在细胞表面的pH波动将非常不同。我们认为,浮游植物物种所采用的不同的pH动态平衡机制可能在这些生物对海洋酸化的反应中发挥重要作用。为了衡量浮游植物生理学的这些新方面将如何在更广泛的范围内影响海洋生态系统,我们将使用建模方法来研究浮游植物细胞中的H+通量如何响应环境的变化。这些数学模型将使我们能够预测不同浮游植物物种目前和未来经历的酸碱度范围,并使我们能够评估它们对自然浮游植物种群多样性的影响,这些影响将在相关方案中进行研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells.
  • DOI:
    10.1038/s41467-017-02426-y
  • 发表时间:
    2018-01-08
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Chrachri A;Hopkinson BM;Flynn K;Brownlee C;Wheeler GL
  • 通讯作者:
    Wheeler GL
The future of the northeast Atlantic benthic flora in a high CO2 world.
在高二氧化碳世界中,东北大西洋底栖植物群的未来。
  • DOI:
    10.1002/ece3.1105
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Brodie, Juliet;Williamson, Christopher J.;Smale, Dan A.;Kamenos, Nicholas A.;Mieszkowska, Nova;Santos, Rui;Cunliffe, Michael;Steinke, Michael;Yesson, Christopher;Anderson, Kathryn M.;Asnaghi, Valentina;Brownlee, Colin;Burdett, Heidi L.;Burrows, Michael T.;Collins, Sinead;Donohue, Penelope J. C.;Harvey, Ben;Foggo, Andrew;Noisette, Fanny;Nunes, Joana;Ragazzola, Federica;Raven, John A.;Schmidt, Daniela N.;Suggett, David;Teichberg, Mirta;Hall-Spencer, Jason M.
  • 通讯作者:
    Hall-Spencer, Jason M.
The role of coccolithophore calcification in bioengineering their environment.
  • DOI:
    10.1098/rspb.2016.1099
  • 发表时间:
    2016-06-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Flynn KJ;Clark DR;Wheeler G
  • 通讯作者:
    Wheeler G
Changes in pH at the exterior surface of plankton with ocean acidification
  • DOI:
    10.1038/nclimate1489
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
    30.7
  • 作者:
    Flynn, Kevin J.;Blackford, Jerry C.;Wheeler, Glen L.
  • 通讯作者:
    Wheeler, Glen L.
Haplo-diplontic life cycle expands coccolithophore niche
  • DOI:
    10.5194/bg-18-1161-2021
  • 发表时间:
    2021-02-16
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    de Vries, Joost;Monteiro, Fanny;Brownlee, Colin
  • 通讯作者:
    Brownlee, Colin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Brownlee其他文献

Regulation of channel activity underlying cell volume and polarity signals in Fucus.
墨角藻中细胞体积和极性信号的通道活动调节。
  • DOI:
    10.1093/jxb/48.special_issue.579
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Alison Taylor;N. F. Manison;Colin Brownlee
  • 通讯作者:
    Colin Brownlee
Plant development: Keeping your distance
植物发育:保持距离
  • DOI:
    10.1016/s0960-9822(00)00614-x
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Colin Brownlee
  • 通讯作者:
    Colin Brownlee
Prior exposure to Cu contamination influences the outcome of toxicological testing of <em>Fucus serratus</em> embryos
  • DOI:
    10.1016/j.marpolbul.2005.07.004
  • 发表时间:
    2005-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hanne D. Nielsen;Trevor R. Burridge;Colin Brownlee;Murray T. Brown
  • 通讯作者:
    Murray T. Brown
Membrane recycling and calcium dynamics during settlement and adhesion of zoospores of the green alga Ulva linza.
绿藻石莼游动孢子沉降和粘附过程中的膜回收和钙动力学。
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. E. Thompson;J. Callow;M. Callow;Glen L. Wheeler;Alison Taylor;Colin Brownlee
  • 通讯作者:
    Colin Brownlee
Phytochrome and potassium uptake by mung bean hypocotyl sections
  • DOI:
    10.1007/bf00394436
  • 发表时间:
    1977-01-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Colin Brownlee;Richard E. Kendrick
  • 通讯作者:
    Richard E. Kendrick

Colin Brownlee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Brownlee', 18)}}的其他基金

New approaches for understanding group-specific phytoplankton photosynthesis in mixed populations
了解混合种群中特定群体浮游植物光合作用的新方法
  • 批准号:
    NE/X009742/1
  • 财政年份:
    2022
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
Light sheet microscopy for live cell imaging of photosensitive systems
用于光敏系统活细胞成像的光片显微镜
  • 批准号:
    BB/S019758/1
  • 财政年份:
    2019
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
Microelectrode Techniques for Cell Physiology:Annual Workshop held at the Marine Biological Association
细胞生理学微电极技术:在海洋生物学协会举办的年度研讨会
  • 批准号:
    BB/P003923/1
  • 财政年份:
    2016
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
MICROELECTRODE TECHNIQUES FOR CELL PHYSIOLOGY: AN ANNUAL WORKSHOP HELD AT THE MARINE BIOLOGICAL ASSOCIATION PLYMOUTH
细胞生理学微电极技术:在普利茅斯海洋生物协会举办的年度研讨会
  • 批准号:
    BB/J002046/1
  • 财政年份:
    2011
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
Ocean Acidification Impacts on Sea-Surface Biology, Biogeochemistry and Climate
海洋酸化对海表生物学、生物地球化学和气候的影响
  • 批准号:
    NE/H016996/1
  • 财政年份:
    2011
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
The spatial organisation of Ca2+ signalling mechanisms in eukaryote flagella
真核生物鞭毛中Ca2信号传导机制的空间组织
  • 批准号:
    BB/H013814/1
  • 财政年份:
    2010
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
Application of an ultra fast single photon camera for spatial imaging of fast cellular events
超快单光子相机在快速细胞事件空间成像中的应用
  • 批准号:
    BB/E000169/1
  • 财政年份:
    2007
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
Understanding the cellular mechanisms and constraints of coccolithophore calcification in relation to ocean pH.
了解与海洋 pH 值相关的颗石藻钙化的细胞机制和限制。
  • 批准号:
    NE/E018319/1
  • 财政年份:
    2007
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant

相似海外基金

NSF Postdoctoral Fellowship in Biology: Chironomid Bioturbation at Future High Temperature Scenarios and its Effect on Nutrient Fluxes and Bacterial Activity
NSF 生物学博士后奖学金:未来高温场景下的摇蚊生物扰动及其对营养通量和细菌活性的影响
  • 批准号:
    2305738
  • 财政年份:
    2024
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Fellowship Award
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
  • 批准号:
    24K01797
  • 财政年份:
    2024
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LTREB: Collaborative Research: Long-term changes in peatland C fluxes and the interactive role of altered hydrology, vegetation, and redox supply in a changing climate
LTREB:合作研究:泥炭地碳通量的长期变化以及气候变化中水文、植被和氧化还原供应变化的相互作用
  • 批准号:
    2411998
  • 财政年份:
    2024
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Continuing Grant
RAPID: Effects of changing wildfire regimes on soil carbon fluxes during and following fire
RAPID:改变野火状况对火灾期间和火灾后土壤碳通量的影响
  • 批准号:
    2420420
  • 财政年份:
    2024
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Deciphering the Role of Phytoplankton Community Composition in Southern Ocean Carbon Fluxes
博士后奖学金:OPP-PRF:破译浮游植物群落组成在南大洋碳通量中的作用
  • 批准号:
    2317998
  • 财政年份:
    2024
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the impacts of an ongoing megadrought: Synthesizing the role of soil moisture in driving ecosystem fluxes from site to regional scales
合作研究:了解正在进行的特大干旱的影响:综合土壤湿度在驱动生态系统通量从场地到区域尺度方面的作用
  • 批准号:
    2331163
  • 财政年份:
    2024
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the impacts of an ongoing megadrought: Synthesizing the role of soil moisture in driving ecosystem fluxes from site to regional scales
合作研究:了解正在进行的特大干旱的影响:综合土壤湿度在驱动生态系统通量从场地到区域尺度方面的作用
  • 批准号:
    2331162
  • 财政年份:
    2024
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Standard Grant
StormFlux: Effect of Storm Babet on Pollution Fluxes from Remobilised Mine Wastes
StormFlux:巴贝风暴对回收矿山废物污染通量的影响
  • 批准号:
    NE/Y006518/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Research Grant
MSA: Quantifying whole-stream denitrification and nitrogen fixation with integrated modeling of N2 and O2 fluxes
MSA:通过 N2 和 O2 通量的集成建模量化全流反硝化和固氮
  • 批准号:
    2307284
  • 财政年份:
    2024
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Standard Grant
CAREER: Investigating the impacts of sea breeze and steep surface gravity waves on nearshore air-sea fluxes
职业:研究海风和陡峭的表面重力波对近岸海气通量的影响
  • 批准号:
    2340712
  • 财政年份:
    2024
  • 资助金额:
    $ 39.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了