Biological rhythms in the beach amphipod Talitrus saltator
海滩片脚类 Talitrus saltator 的生物节律
基本信息
- 批准号:NE/K000594/1
- 负责人:
- 金额:$ 9.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
All living things, from bacteria to humans have biological 'clocks' that enable them to keep time with their surrounding environment which is how we humans tend to wake up at roughly the same time each day! Remarkably, these internal timing mechanisms, which are normally found in the brains of animals, continue to work even when the organism is separated from cues, such as cycles of night and day. Biological clocks are extremely important because organisms can prepare in advance for bouts of activity, growth, mating and other necessary activity at the most appropriate part of the day to avoid predators, find food or mates. Therefore they contribute significantly to the survival and success of all organisms. We now know that the clock mechanisms in different plants and animals that have been studied share striking similarities in the molecules that drive them but, most of our understanding comes from work on a very few 'model organisms' such as the fruit fly. The fruit fly, and nearly all terrestrial organisms, uses the night and day light cycles to synchronise their clocks to local conditions. Consequently their rhythmic behaviour and physiology recurs on a cycle of about 24h. However, marine plants and animals are exposed to many different cyclic events such as the tide coming in and out (tidal clocks; every 12.4h), lunidian (cycles of tidal height; 12.8h) and even changes in tidal range (spring and neap tides) caused by the gravitational pull of the moon and the sun (semilunar clocks; 14d). Although it is well known that many marine species time their behaviour and physiology to these different events, we know very little about their how their internal clocks work. For instance, do they have the same molecular 'cogs' as daily clocks but 'run' at a different speed, or do they have dedicated 'tidal', 'lunidian' or 'semilunar' clocks? This project will decipher the genetic and biochemical basis of cyclic behaviours in the sand-hopper, Talitrus saltator. In the UK this small crustacean emerges from its burrow in the sand at night to feed. It navigates up and down the shore by moving towards the light of the sea horizon in the night but just before dawn it turns back and is drawn to the dark of the land. The emergence and light/dark preferences of the sand-hopper are under clock control and continue to be expressed even if they are kept artificially in total darkness. In the Mediterranean the same species navigate in a different way- by using the position of the sun and moon as their guide. This must also require a sense of time because as the Earth rotates, the sun and the moon appear to move across the sky and the sand-hopper must compensate for this to keep on course. I will compare the UK sand-hoppers to those of the Mediterranean to determine whether their clocks are geared differently or even if they have multiple clocks in their brains. The outcomes of this work could have important impacts on our understanding of biological clocks, how they have evolved and adapted to suit the prevailing environmental conditions and how they contribute to the success of the organism and their interactions with other species.
从细菌到人类,所有生物都有生物钟,使它们能够与周围环境保持同步,这就是我们人类每天几乎在同一时间醒来的原因!值得注意的是,这些通常在动物大脑中发现的内部计时机制,即使在生物体与暗示分离时仍继续工作,例如昼夜循环。生物钟极其重要,因为生物体可以在一天中最合适的时间提前准备好活动、生长、交配和其他必要的活动,以躲避捕食者、寻找食物或交配。因此,它们对所有有机体的生存和成功都有重大贡献。我们现在知道,已经研究过的不同动植物的时钟机制在驱动它们的分子上有着惊人的相似之处,但我们的大部分理解来自于对极少数“模式生物”的研究,比如果蝇。果蝇和几乎所有的陆地生物都利用昼夜光周期来使它们的生物钟与当地的条件保持同步。因此,它们的节律行为和生理循环大约以24小时为一个周期。然而,海洋植物和动物暴露在许多不同的循环事件中,例如潮汐进出(潮汐时钟,每12.4小时),鲁尼迪亚(潮汐高度周期,12.8小时),甚至由于月亮和太阳的引力而引起的潮差变化(大潮和小潮)(半月钟,14天)。虽然众所周知,许多海洋物种将它们的行为和生理时间安排在这些不同的事件上,但我们对它们的生物钟是如何工作的知之甚少。例如,他们是否有和日常时钟一样的分子‘齿轮’,但以不同的速度‘运行’,或者他们有专门的‘潮汐’、‘Lunidian’或‘半月’时钟?这个项目将破译沙漏斗沙鼠循环行为的遗传和生化基础。在英国,这种小型甲壳类动物晚上从沙子里的洞穴中出来觅食。它在夜间沿着海岸上下航行,朝着海平面的灯光移动,但就在黎明之前,它返回并被陆地的黑暗所吸引。沙鼠的出现和明暗喜好受到时钟的控制,即使它们被人为地保存在完全黑暗的环境中,它们也会继续表现出来。在地中海,同样的物种以不同的方式导航--以太阳和月亮的位置为向导。这还必须需要时间感,因为随着地球自转,太阳和月亮似乎在天空中移动,而沙漏必须补偿这一点才能保持在轨道上。我会将英国的跳沙者和地中海的跳沙者进行比较,以确定他们的时钟是否调整不同,或者即使他们的大脑中有多个时钟。这项工作的结果可能会对我们理解生物钟、它们如何进化和适应主流环境条件以及它们如何有助于有机体的成功及其与其他物种的相互作用产生重要影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The role of the antennae in the compass-based orientation of the equatorial sandhopper Talorchestia martensii Weber (Crustacea Amphipoda)
触角在赤道沙漏 Talorchestia martensii Weber(甲壳纲 Amphpoda)基于指南针定向中的作用
- DOI:10.1080/03949370.2020.1844303
- 发表时间:2020
- 期刊:
- 影响因子:1.2
- 作者:Ugolini A
- 通讯作者:Ugolini A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Wilcockson其他文献
濡れたまま・生きたまま電子顕微鏡観察するNanoSuit法―ハマトビムシなどを例にして
NanoSuit 方法用于在潮湿和活着的情况下进行电子显微镜观察 - 以叶甲虫等为例。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
針山孝彦;高久康春;河崎秀陽;太田勲;鈴木浩司;山濱由美;外山美奈;David Wilcockson;Alice Ciofini;Alberto Ugolini - 通讯作者:
Alberto Ugolini
L’horloge circadienne et les rythmes transcriptomiques chez une espèce zooplanctonique clé pendant le jour polaire Arctique
- DOI:
10.1016/j.msom.2021.10.020 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:
- 作者:
Laura Payton;Lukas Hüppe;Céline Noirot;Claire Hoede;Kim Last;David Wilcockson;Elizaveta Ershova;Sophie Valière;Bettina Meyer - 通讯作者:
Bettina Meyer
David Wilcockson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Wilcockson', 18)}}的其他基金
Endocrine scaffolds and peptide networks: How is the molt cycle and ecdysis programme controlled in crustaceans?
内分泌支架和肽网络:甲壳类动物的蜕皮周期和蜕皮程序是如何控制的?
- 批准号:
BB/T005084/1 - 财政年份:2020
- 资助金额:
$ 9.57万 - 项目类别:
Research Grant
Unravelling the ecdysis cascade in crustaceans: Can we unify neuropeptide and receptor identities and functions in arthropods?
解开甲壳类动物的蜕皮级联:我们能否统一节肢动物中的神经肽和受体的身份和功能?
- 批准号:
BB/L021242/1 - 财政年份:2014
- 资助金额:
$ 9.57万 - 项目类别:
Research Grant
相似海外基金
Conference: Society for Research on Biological Rhythms (SRBR): Timing from Cells to Clinics: San Juan, Puerto Rico May 18th - May 23rd, 2024
会议:生物节律研究协会 (SRBR):从细胞到诊所的计时:波多黎各圣胡安 2024 年 5 月 18 日至 5 月 23 日
- 批准号:
2416046 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Standard Grant
Meal timing and energy restriction as regulators of central and peripheral human rhythms
进餐时间和能量限制作为中枢和外周人类节律的调节器
- 批准号:
BB/Y006852/1 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Research Grant
Identifying parasystolic rhythms from ambulatory ECGs using mathematical models.
使用数学模型从动态心电图识别副收缩节律。
- 批准号:
489427 - 财政年份:2023
- 资助金额:
$ 9.57万 - 项目类别:
Miscellaneous Programs
Morning light exposure and sleep/biological rhythms in young adults
年轻人的晨光暴露和睡眠/生物节律
- 批准号:
23KJ0288 - 财政年份:2023
- 资助金额:
$ 9.57万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
- 批准号:
10556475 - 财政年份:2023
- 资助金额:
$ 9.57万 - 项目类别:
The effect of circadian rhythm disruptions on the angiogenic response to hypoperfusion in the AD brain
昼夜节律紊乱对 AD 大脑低灌注血管生成反应的影响
- 批准号:
10656133 - 财政年份:2023
- 资助金额:
$ 9.57万 - 项目类别:
Development and implementation of a digital sleep intervention for preschoolers in foster care
为寄养中的学龄前儿童开发和实施数字睡眠干预
- 批准号:
10724304 - 财政年份:2023
- 资助金额:
$ 9.57万 - 项目类别:
Sleep and circadian rhythm phenotypes and mechanisms associated with opioid use disorder treatment outcomes
睡眠和昼夜节律表型以及与阿片类药物使用障碍治疗结果相关的机制
- 批准号:
10776106 - 财政年份:2023
- 资助金额:
$ 9.57万 - 项目类别:
The Role of Uterine Glycogen in Establishing a Successful Pregnancy
子宫糖原在成功怀孕中的作用
- 批准号:
10725894 - 财政年份:2023
- 资助金额:
$ 9.57万 - 项目类别: