In Control of Transpiration: The Evolutionary Interplay between Cuticle, Stomata, and Air Pores
蒸腾作用的控制:角质层、气孔和气孔之间的进化相互作用
基本信息
- 批准号:NE/K009303/1
- 负责人:
- 金额:$ 64.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
If you scrape your fingernail lightly across the surface of some plants like the Cactus, you may pick up a smattering of wax, as if you'd run your fingernail down the side of a candle. In fact, almost all the surfaces of plants, the stems, leaves, flowers and fruit are covered in a tiny layer of wax called the cuticle. This layer is too thin to see because it is thousands of times thinner than a human hair. However its effects can be seen. It is this waxy layer that makes leaves look shiny, allows you to polish your apple, and causes water droplets to roll smoothly off the surface of leaves in a rain shower. It is this waxy cuticle that allows plants to live on the land without drying out. As such, the cuticle is one of the most important evolutionary inventions in the history of our planet because it has allowed life to leave the watery oceans and survive on dry land. Life and land has never been the same since. The cuticle also does a lot of other useful things for the plants. For example, it blocks bacteria and fungi from infecting the plant, much like human skin. Indeed, one of the reasons that fruit can last for days in the fruit bowl without becoming rotten is due to the protective effects of the waxy cuticle. We have a lot to learn about how plants make waxes, and move these waxes from where they are manufactured inside the plants to the surface of the plant. The waxy components of the cuticle are made, transported and assembled on the surface by proteins, which are encoded for by genes in a plant's DNA. However we have still to identify many of the genes involved in making the cuticle. It is important to identify these genes because it could help us to design better crops to resist diseases and to create fruit that last longer, and have a longer shelf life with less food waste. It may also help us to commercially synthesise waxes by copying these genes into the DNA of other organisms. Remarkably we also do not know how plants first evolved the wax cuticle. We do not know what the function of the waxy layer was in the first land plants, what steps were involved in the evolution of the waxy layer, and how it affected the biology of these land plants. We don't know which genes were important in its evolution or how the cuticle has changed and evolved over millions of years. However, by studying the cuticle in plants that represent the first lineages to survive on land, we can get a sense of how the cuticle has changed through evolution and with changing climate. In this project I would look at living relatives of some of the earliest plants to move onto land. I will compare the DNA of plants that never moved onto land and do not have a cuticle, with DNA from land plants that do have a cuticle. This will help detect genes that are involved in making the cuticle and reveal how these genes have changed over time. I will interfere with these genes to stop them working, in order to see how they make the waxy cuticle in these early plants. Together this will help us to better understand to what extent all land plants have the same genes to make cuticle in the same way, and to what extent the cuticle had similar properties and functions in the past and present. Plants are constantly absorbing water from the soil and transferring it to the atmosphere via tiny pores called stomata - a process called transpiration. Together plants all over the planet release an enormous amount of moisture into the air, which in turn forms clouds and rain. The waterproof cuticle drastically reduces transpiration and consequently affects the global climate. We do not know how the cuticle of plants will respond to man made changes to the climate. This study will lead to better understanding of the cuticle across all land plants and allow us to predict the effect of changing temperature, carbon dioxide, and drought on the cuticle. This in turn will allow us to better understand how plants will respond to the changing climate
如果你用指甲轻轻刮过一些植物的表面,比如仙人掌,你可能会沾到一点蜡,就像你用指甲刮过蜡烛一样。事实上,几乎所有植物的表面,茎,叶,花和果实都覆盖着一层叫做角质层的蜡。这一层太薄了,看不见,因为它比人类的头发还要薄几千倍。但其效果是可以看到的。正是这种蜡质层使树叶看起来有光泽,让你可以擦亮你的苹果,并使水滴在阵雨中顺利地从树叶表面滚落。正是这种蜡质角质层使植物能够在陆地上生存而不会干燥。因此,角质层是我们星球历史上最重要的进化发明之一,因为它允许生命离开有水的海洋,在干燥的陆地上生存。从那以后,生活和土地就再也不一样了。角质层也为植物做了很多其他有用的事情。例如,它可以阻止细菌和真菌感染植物,就像人类皮肤一样。事实上,水果可以在水果盘中持续数天而不腐烂的原因之一是由于蜡质角质层的保护作用。关于植物如何制造蜡,以及如何将这些蜡从植物内部制造的地方转移到植物表面,我们有很多东西要学习。角质层的蜡质成分是由蛋白质制造、运输和组装在表面上的,蛋白质是由植物DNA中的基因编码的。然而,我们仍然需要确定许多与制造角质层有关的基因。识别这些基因很重要,因为它可以帮助我们设计更好的作物来抵抗疾病,并创造出更持久的水果,保质期更长,食物浪费更少。它还可以帮助我们通过将这些基因复制到其他生物的DNA中来商业化地合成蜡。值得注意的是,我们也不知道植物最初是如何进化出蜡质角质层的。我们不知道蜡质层在第一批陆地植物中的功能是什么,蜡质层的进化涉及哪些步骤,以及它如何影响这些陆地植物的生物学。我们不知道哪些基因在它的进化中很重要,也不知道角质层在数百万年的时间里是如何变化和进化的。然而,通过研究代表第一个在陆地上生存的谱系的植物的角质层,我们可以了解角质层如何通过进化和气候变化而变化。 在这个项目中,我将研究一些最早迁移到陆地上的植物的亲戚。我将比较从未移到陆地上并且没有角质层的植物的DNA,以及来自陆地植物的DNA,这些植物确实有角质层。这将有助于检测参与制造角质层的基因,并揭示这些基因如何随着时间的推移而变化。我将干扰这些基因,使它们停止工作,以便观察它们是如何在这些早期植物中制造蜡质角质层的。总之,这将有助于我们更好地了解在何种程度上所有陆地植物都具有相同的基因,以相同的方式制造角质层,以及角质层在过去和现在具有相似的性质和功能。植物不断地从土壤中吸收水分,并通过称为气孔的小孔将其转移到大气中-这一过程称为蒸腾作用。地球上所有的植物一起向空气中释放出大量的水分,这些水分又形成了云和雨。防水角质层大大减少蒸腾作用,从而影响全球气候。我们不知道植物的角质层将如何应对人为造成的气候变化。这项研究将使我们更好地了解所有陆地植物的角质层,并使我们能够预测温度变化,二氧化碳和干旱对角质层的影响。这反过来将使我们更好地了解植物将如何应对气候变化
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plant Conservation Science and Practice - The Role of Botanic Gardens
植物保护科学与实践 - 植物园的作用
- DOI:10.1017/9781316556726.009
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Brockington S
- 通讯作者:Brockington S
Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure.
- DOI:10.1093/molbev/msu147
- 发表时间:2014-08
- 期刊:
- 影响因子:10.7
- 作者:Bennett T;Brockington SF;Rothfels C;Graham SW;Stevenson D;Kutchan T;Rolf M;Thomas P;Wong GK;Leyser O;Glover BJ;Harrison CJ
- 通讯作者:Harrison CJ
10KP: A phylodiverse genome sequencing plan.
10KP:系统多样性基因组测序计划。
- DOI:10.1093/gigascience/giy013
- 发表时间:2018-03-01
- 期刊:
- 影响因子:9.2
- 作者:Cheng S;Melkonian M;Smith SA;Brockington S;Archibald JM;Delaux PM;Li FW;Melkonian B;Mavrodiev EV;Sun W;Fu Y;Yang H;Soltis DE;Graham SW;Soltis PS;Liu X;Xu X;Wong GK
- 通讯作者:Wong GK
Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales.
- DOI:10.1111/nph.13441
- 发表时间:2015-09
- 期刊:
- 影响因子:0
- 作者:Brockington SF;Yang Y;Gandia-Herrero F;Covshoff S;Hibberd JM;Sage RF;Wong GK;Moore MJ;Smith SA
- 通讯作者:Smith SA
On the disintegration of Molluginaceae: a new genus and family (
论软体动物科的解体:一个新的属和科(
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:1.1
- 作者:Christenhusz Maarten J. M.
- 通讯作者:Christenhusz Maarten J. M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Brockington其他文献
Samuel Brockington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Brockington', 18)}}的其他基金
NSFDEB-NERC; Collaborative Resource; A phytochemical "tug-of-war" and its impact on organismal diversification and niche occupancy in Caryophyllales
NSFDEB-NERC;
- 批准号:
NE/V003852/1 - 财政年份:2020
- 资助金额:
$ 64.94万 - 项目类别:
Research Grant
相似海外基金
Development of Transpiration-Type Thermoelectric Power Generation Elements that Require No Heat Source
无需热源的蒸腾式温差发电元件的开发
- 批准号:
23K17814 - 财政年份:2023
- 资助金额:
$ 64.94万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Pressure fluctuations in transpiration cooling: a DNS study
蒸腾冷却中的压力波动:DNS 研究
- 批准号:
572963-2022 - 财政年份:2022
- 资助金额:
$ 64.94万 - 项目类别:
University Undergraduate Student Research Awards
Adapting wheat to stressful environments: Identifying key transpiration efficiency components reducing day-time water loss and heat stress linked to yield
使小麦适应压力环境:确定关键的蒸腾效率组成部分,减少与产量相关的白天水分流失和热应激
- 批准号:
570351-2021 - 财政年份:2022
- 资助金额:
$ 64.94万 - 项目类别:
Alliance Grants
Adapting wheat to stressful environments: Identifying key transpiration efficiency components reducing day-time water loss and heat stress linked to yield
使小麦适应压力环境:确定关键的蒸腾效率组成部分,减少与产量相关的白天水分流失和热应激
- 批准号:
570351-2021 - 财政年份:2021
- 资助金额:
$ 64.94万 - 项目类别:
Alliance Grants
SBIR Phase I: Orchard Transpiration Irrigation
SBIR 第一阶段:果园蒸腾灌溉
- 批准号:
2051966 - 财政年份:2021
- 资助金额:
$ 64.94万 - 项目类别:
Standard Grant
CAREER: Understanding the importance of biomass hydraulic capacitance for transpiration
职业:了解生物质水力电容对于蒸腾作用的重要性
- 批准号:
2046768 - 财政年份:2021
- 资助金额:
$ 64.94万 - 项目类别:
Continuing Grant
MCA: Effects of unsteady wind and surface morphology on the plant transpiration
MCA:不稳定风和表面形态对植物蒸腾作用的影响
- 批准号:
2120739 - 财政年份:2021
- 资助金额:
$ 64.94万 - 项目类别:
Standard Grant
On the physiology of plant transpiration
植物蒸腾作用的生理学
- 批准号:
DP210103186 - 财政年份:2021
- 资助金额:
$ 64.94万 - 项目类别:
Discovery Projects
Pressure fluctuations in transpiration cooling
蒸腾冷却中的压力波动
- 批准号:
562663-2021 - 财政年份:2021
- 资助金额:
$ 64.94万 - 项目类别:
University Undergraduate Student Research Awards
Green or crispy: Which plants use transpiration to survive heatwaves?
绿色或酥脆:哪些植物利用蒸腾作用来抵御热浪?
- 批准号:
DE200100649 - 财政年份:2020
- 资助金额:
$ 64.94万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




