Transformation of CSEM data for determination of resistivities by seismic data processing methods.

通过地震数据处理方法转换 CSEM 数据以测定电阻率。

基本信息

  • 批准号:
    NE/L008432/1
  • 负责人:
  • 金额:
    $ 8.09万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

INTRODUCTION Most oil and gas is produced from porous underground or subsea reservoirs discovered by seismic surveys. Normally the pores are filled with salt water. Seismic signals do not distinguish oil-saturated from water-saturated reservoirs, so wells are drilled to determine the fluids present in the reservoir. Three out of four exploration wells find no hydrocarbons and are "dry." The cost of finding new hydrocarbon reserves can be reduced by reducing the number of 'dry' wells drilled - £1 million to £100 million per well, depending on water depth and depth of well. Hydrocarbons are electrically resistive, whereas salt water is conductive. It follows that electromagnetic methods have the potential to distinguish between water and hydrocarbons before drilling and thus reduce the number of dry wells. Since 2002 a method for conducting offshore electromagnetic surveys has been developed for the oil industry, known as the controlled source electromagnetic (CSEM) method. It has become an accepted tool in the search for sub-sea hydrocarbons, although it is still immature and there are many technical problems to solve. RESISTIVITY AND ELECTROMAGNETIC WAVE PROPAGATION The propagation of the electric and magnetic fields is affected by the electrical conductivity of the medium. Electrical conductivity is the reciprocal of resistivity: the more easily a medium is able to conduct electricity the less resistive it is. As the electromagnetic fields propagate they lose energy because electric current flows in conducting material: the greater the conductivity of the medium, the greater the loss of energy. This limits the depth of investigation. Sea water has a conductivity of about 3 S/m (resistivity 1/3 ohm-m); North Sea Tertiary sediments have a conductivity of about 1 S/m (resistivity 1 ohm-m). A sandstone reservoir with a resistivity of 1 ohm-m can have a resistivity as high as 1000 ohm-m when saturated with hydrocarbons. This has been well known for years from well logs. So the resistivity contrast can be two or three orders of magnitude when hydrocarbons are present. Seismic impedance contrasts are much smaller: for an oil/water interface the contrast is a few per cent. Gas gives a higher impedance contrast than oil, but a small amount of gas can give the same response as a large volume of gas. It is difficult to quantify the amount of gas from the seismic response. The CSEM method is complementary to the seismic method: it can provide additional quantitative information about the reservoir fluids. THE PROBLEM We are concerned with the determination of the resistivities from the CSEM data. Conventionally, EM data are interpreted by inversion. That is, the response of a resistivity model of the earth is synthesized in a computer using the same acquisition geometry as for the field data, and the result is compared with the field data. The resistivity model is adjusted until the synthesized data match the field data within an acceptable error. What comes out of the inversion is only what has been put into the model by the geophysicists. It has not been derived from the measured data. This contrasts with the seismic method in which seismic velocities are determined from the seismic data by lining up seismic arrivals. This principle is fundamental to seismic data processing. THE PROPOSALSeismic data obey the wave equation: the wave travels without losing energy. Electromagnetic wave fields obey the diffusion equation. The calculation of the electromagnetic data has been formulated as a weighted sum of waves. The waves are an intermediate step in the calculation. We propose to transform the diffusive electromagnetic data to this intermediate domain, where they may be manipulated just like seismic data, enabling the resistivities to be determined directly: the theory says the resistivities should be proportional to the square of the determined velocities.
引言大多数石油和天然气是从地震勘探发现的多孔地下或海底储层中生产的。通常,孔隙中充满了盐水。地震信号不能区分油饱和和水饱和的储层,因此要钻探威尔斯以确定储层中存在的流体。四分之三的勘探威尔斯井没有发现碳氢化合物,而且是“干井”。“寻找新的碳氢化合物储量的成本可以通过减少”干“威尔斯钻井的数量来降低--每口井100万至1亿英镑,具体取决于水深和井深。碳氢化合物是电阻性的,而盐水是导电的。因此,电磁法有可能在钻井前区分水和碳氢化合物,从而减少干威尔斯的数量。自2002年以来,已经为石油工业开发了一种用于进行海上电磁测量的方法,称为受控源电磁(CSEM)方法。它已成为寻找海底碳氢化合物的公认工具,尽管它还不成熟,还有许多技术问题需要解决。电阻率和电磁波传播电场和磁场的传播受介质的电导率影响。电导率是电阻率的倒数:一种介质越容易导电,它的电阻就越小。当电磁场传播时,它们会损失能量,因为电流在导电材料中流动:介质的导电性越大,能量损失越大。这限制了调查的深度。海水的电导率约为3 S/m(电阻率1/3 ohm-m);北海第三纪沉积物的电导率约为1 S/m(电阻率1 ohm-m)。电阻率为1 ohm-m的砂岩储层在被烃饱和时可具有高达1000 ohm-m的电阻率。多年来,这一点从测井记录中已众所周知。因此,当存在碳氢化合物时,电阻率对比度可以是两个或三个数量级。地震波阻抗对比度要小得多:对于油/水界面,对比度为百分之几。天然气的阻抗对比度比石油高,但少量天然气的响应与大量天然气的响应相同。很难从地震反应中量化气体的量。CSEM方法是地震方法的补充:它可以提供有关储层流体的额外定量信息。 问题我们关心的是从CSEM数据中确定折射率。常规地,EM数据通过反演来解释。也就是说,使用与现场数据相同的采集几何结构在计算机中合成地球的电阻率模型的响应,并且将结果与现场数据进行比较。调整电阻率模型,直到合成数据在可接受的误差内匹配现场数据。从反演中得到的结果,只是量子力学家放入模型中的结果。它不是从测量数据中得出的。这与地震方法形成对比,在地震方法中,地震速度是通过排列地震波至从地震数据中确定的。这一原则是地震数据处理的基础。地震数据服从波动方程:波传播时不损失能量。电磁波场服从扩散方程。电磁数据的计算已被公式化为波的加权和。波是计算中的中间步骤。我们建议将扩散电磁数据转换到这个中间域,在这个中间域中,它们可以像地震数据一样被操纵,从而能够直接确定双折射率:理论上说,双折射率应该与所确定的速度的平方成比例。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting controlled-source electromagnetic responses from seismic velocities
根据地震速度预测受控源电磁响应
  • DOI:
    10.1190/int-2013-0153.1
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Werthmüller D
  • 通讯作者:
    Werthmüller D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anton Ziolkowski其他文献

Anton Ziolkowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anton Ziolkowski', 18)}}的其他基金

Shale Gas Play Definition using Controlled Source Electro-Magnetic Geophysics
使用受控源电磁地球物理学定义页岩气储集层
  • 批准号:
    NE/N004752/1
  • 财政年份:
    2015
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Research Grant
Combining electromagnetic and seismic methods to monitor carbon dioxide sequestration
结合电磁和地震方法监测二氧化碳封存
  • 批准号:
    NE/I018735/1
  • 财政年份:
    2011
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Training Grant

相似国自然基金

基于非结构有限元的频率域海洋CSEM和MT三维联合反演
  • 批准号:
    42274104
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
基于虚拟波动域的三维海洋CSEM正演及电磁场传播规律分析
  • 批准号:
    42004055
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于A-φ势三维CSEM高阶自适应有限元正演
  • 批准号:
    42004061
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于非结构网格及自适应有限元的海洋CSEM和MT三维联合反演方法研究
  • 批准号:
    41904074
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
基于共轭梯度再加权优化的时间域海洋CSEM 1D各向异性反演研究
  • 批准号:
    41406020
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Marine CSEM study of the southern Hikurangi Margin: A first step towards estimating the global gas hydrate carbon budget
希库朗吉边缘南部的海洋 CSEM 研究:估算全球天然气水合物碳预算的第一步
  • 批准号:
    1916553
  • 财政年份:
    2019
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Continuing Grant
MRI: Development of a Towed Streamer Controlled Source Electromagnetic (CSEM) System for Groundwater Mapping on the Continental Shelf
MRI:开发用于大陆架地下水测绘的拖缆控制源电磁 (CSEM) 系统
  • 批准号:
    1726798
  • 财政年份:
    2017
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Standard Grant
Market study to assess the market acceptability of CSEM and to quantify the Economic and environmental benefits
市场研究,评估 CSEM 的市场可接受性并量化经济和环境效益
  • 批准号:
    NE/P008933/1
  • 财政年份:
    2016
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Research Grant
Forwaed Modeling and Inversion of Controlled Source Electromagnetic (CSEM) data
可控源电磁 (CSEM) 数据的前沿建模和反演
  • 批准号:
    319220-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Postgraduate Scholarships - Master's
Forwaed Modeling and Inversion of Controlled Source Electromagnetic (CSEM) data
可控源电磁 (CSEM) 数据的前沿建模和反演
  • 批准号:
    319220-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
CSEM Scholarships
CSEM奖学金
  • 批准号:
    0422452
  • 财政年份:
    2004
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Standard Grant
CSEM Scholarships at the University of Colorado at Colorado Springs
科罗拉多大学科罗拉多斯普林斯分校 CSEM 奖学金
  • 批准号:
    0422524
  • 财政年份:
    2004
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Standard Grant
Recruitment and Retention of CSEM Students in the Underrepresented Groups
代表性不足群体中 CSEM 学生的招募和保留
  • 批准号:
    0220695
  • 财政年份:
    2002
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Standard Grant
Computer Science, Engineering, and Mathematics (CSEM) Scholarships for the 21st Century
21 世纪计算机科学、工程和数学 (CSEM) 奖学金
  • 批准号:
    0220547
  • 财政年份:
    2002
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Standard Grant
Department of CSEM Enhancment Program at JSU
JSU CSEM 强化项目部
  • 批准号:
    0122929
  • 财政年份:
    2001
  • 资助金额:
    $ 8.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了