A novel pathway for the production of the climate cooling gas dimethyl sulfide - how important is the mddA gene to global DMS emissions?
生产气候冷却气体二甲硫醚的新途径 - mddA 基因对全球 DMS 排放有多重要?
基本信息
- 批准号:NE/M004449/1
- 负责人:
- 金额:$ 47.51万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The "smell of the seaside" is actually caused by a gaseous compound called dimethyl sulfide (DMS) that is produced by microbes. This gas is important because it is a very abundant organic sulfur compound which is released to the air from the marine environment. Globally, approximately 300 million tons of DMS per annum is produced, mainly by bacteria. Also, chemical products arising from DMS oxidation help form clouds over the oceans, to an extent that affects the sunlight reaching the Earth's surface, with effects on climate. In turn, these products are delivered back to Earth as rain, representing a key component of the global sulfur cycle. Interestingly, DMS is a potent chemo-attractant for many organisms including seabirds, crustaceans and marine mammals that all move towards DMS because they associate DMS with food.Currently it is widely accepted that DMS is mainly produced as a result of microbes degrading the osmolyte dimethylsulfoniopropionate (DMSP), which is produced by phytoplankton in the oceans, by seaweeds and by a few salt-tolerant plants. Our preliminary work and that of Ron Kiene, has prompted us to question whether it is solely these processes that produce DMS.In our preliminary data we have:1. Found a microbial pathway, the methanethiol-dependent DMS production (Mdd) pathway, that produces DMS but which does not involve DMSP. 2. Shown how the bacterium "Pseudomonas deceptionensis" makes DMS via a gene called mddA.3. Shown that this gene is found in a wide range of bacteria such as Bradyrhizobium japonicum, a nitrogen-fixing symbiont of soybeans, Mycobacterium tuberculosis, the causative agent of tuberculosis and some cyanobacteria. 4. Shown that the Mdd pathway is active in both salty and freshwater sediments and that the mddA gene is abundant in bacteria living in marine sediments.5. Shown that other bacteria have other undiscovered ways of making DMS from methanethiol.We wish to investigate how important this novel DMS production pathway is for the global production of this climate changing gas. To answer this question, we will sample various marine and freshwater environments and investigate how active the Mdd pathway is in these environments and how this novel pathway for the production of DMS is regulated. We already know that this Mdd pathway is probably active in most of our sample sites, which include mud from a saltmarsh, a freshwater lake, a peat bog and seawater. It is equally important to know which microbes are responsible for the process (mediated by Mdd) and why they produce DMS. We will use a powerful suite of microbial ecology techniques, combined with genetic tools to identify the microbes and the key genes involved in producing DMS via this new Mdd pathway.We will identify: a) the microbes living in both the oxic and anoxic mud samples and in seawater; b) how these microbial communities change when we enrich for increased DMS production via the Mdd pathway and c) which forms of the mddA gene (and the enzyme encoded by this gene) are responsible for high DMS production in these varied environments. To understand how and why bacteria in the environment are Mdd active, we will study in detail a few model bacteria, some of which have been isolated from our sample sites. This will involve identifying and mutating the genes encoding the Mdd pathway to ascertain why they use it. This will be done with bacteria that have a specific gene "mddA", but, also on those that do not, which will allow us to identify new mdd genes. Given the environmental consequences of the climate-active gas DMS, it is important to know which types of microbes affect its production and which of the various potential pathways are involved. This will help us in the future to model how changes in the environment impact on the balance of these climate processes.
“海滨的气味”实际上是由微生物产生的一种名为二甲基硫醚(DMS)的气体化合物引起的。这种气体很重要,因为它是一种非常丰富的有机硫化合物,从海洋环境中释放到空气中。在全球范围内,每年约有3亿吨二甲硫醚产生,主要由细菌产生。此外,二甲基硫醚氧化产生的化学产品有助于在海洋上空形成云层,在一定程度上影响了到达地球表面的阳光,从而对气候产生影响。反过来,这些产品又以雨水的形式返回地球,这是全球硫循环的关键组成部分。有意思的是,二甲硫醚对许多生物,包括海鸟、甲壳类动物和海洋哺乳动物都是一种强有力的化学引诱剂,它们都向二甲硫醚迁移,因为它们将二甲硫醚与食物联系在一起。目前普遍认为,二甲硫醚主要是由微生物降解海洋浮游植物、海藻和少数耐盐植物产生的渗透剂二甲基磺基丙酸酯(DMSP)而产生的。我们和罗恩基恩的初步工作促使我们质疑是否仅仅是这些过程产生了DMS。发现了一种微生物途径,即依赖于甲硫醇的DMS生产(Mdd)途径,该途径产生DMS,但不涉及DMSP。2.展示了细菌“假单胞菌”如何通过一种名为mddA.3的基因制造DMS。显示该基因存在于广泛的细菌中,如大豆固氮共生菌日本慢生根瘤菌,结核分枝杆菌,结核病的病原体和一些蓝细菌。4.表明Mdd途径在咸和淡水沉积物中都是活跃的,并且mddA基因在生活在海洋沉积物中的细菌中是丰富的。表明其他细菌有其他未发现的方法从甲烷乙烷制造DMS。我们希望研究这种新的DMS生产途径对这种气候变化气体的全球生产有多重要。为了回答这个问题,我们将对各种海洋和淡水环境进行采样,并研究Mdd途径在这些环境中的活跃程度,以及这种生产DMS的新途径是如何调节的。我们已经知道,这种Mdd途径可能在我们的大多数样本中都很活跃,其中包括盐沼,淡水湖,泥炭沼泽和海水中的泥浆。同样重要的是要知道哪些微生物负责这一过程(由Mdd介导)以及它们为什么产生DMS。我们将使用一套强大的微生物生态学技术,结合遗传工具来鉴定通过这种新的Mdd途径产生DMS的微生物和关键基因。我们将鉴定:a)生活在好氧和缺氧泥浆样品和海水中的微生物; B)当我们通过Mdd途径富集增加的DMS生产时,这些微生物群落如何变化,以及c)mddA基因的哪些形式(和该基因编码的酶)负责在这些不同的环境中产生高DMS。为了了解环境中的细菌是如何以及为什么活跃的,我们将详细研究一些模式细菌,其中一些已经从我们的样本中分离出来。这将涉及识别和突变编码Mdd途径的基因,以确定它们为什么使用它。这将对具有特定基因“mddA”的细菌进行,但也对那些没有的细菌进行,这将使我们能够识别新的mdd基因。考虑到气候活跃气体二甲基硫的环境后果,重要的是要知道哪些类型的微生物影响其生产,以及涉及各种潜在途径中的哪些。这将有助于我们在未来模拟环境变化如何影响这些气候过程的平衡。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Methanethiol-dependent dimethylsulfide production in soil environments.
- DOI:10.1038/ismej.2017.105
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:Carrión O;Pratscher J;Curson ARJ;Williams BT;Rostant WG;Murrell JC;Todd JD
- 通讯作者:Todd JD
Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW--A Mononuclear Iron-Dependent DMSP Lyase.
- DOI:10.1371/journal.pone.0127288
- 发表时间:2015
- 期刊:
- 影响因子:3.7
- 作者:Brummett AE;Schnicker NJ;Crider A;Todd JD;Dey M
- 通讯作者:Dey M
Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere.
- DOI:10.1038/ismej.2017.148
- 发表时间:2018-01
- 期刊:
- 影响因子:0
- 作者:Eyice Ö;Myronova N;Pol A;Carrión O;Todd JD;Smith TJ;Gurman SJ;Cuthbertson A;Mazard S;Mennink-Kersten MA;Bugg TD;Andersson KK;Johnston AW;Op den Camp HJ;Schäfer H
- 通讯作者:Schäfer H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Todd其他文献
Using a Respondent-Type Matching-to-Sample Exclusion Training Procedure to Establish Equivalence Responding
使用受访者类型匹配样本排除训练程序来建立等效响应
- DOI:
10.1007/s40732-024-00590-4 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jonathan Todd;M. Keenan;Stephen Gallagher - 通讯作者:
Stephen Gallagher
Delivery of care, seizure control and medication adherence in women with epilepsy during pregnancy
- DOI:
10.1016/j.seizure.2022.06.002 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:
- 作者:
Amber Askarieh;Séan MacBride-Stewart;Jack Kirby;David Fyfe;Richard Hassett;Jonathan Todd;Alex D Marshall;John Paul Leach;Craig A Heath - 通讯作者:
Craig A Heath
A protocol for emulating a published randomised controlled trial using registry data: effects of azithromycin in young adults with cystic fibrosis
使用注册数据模拟已发表的随机对照试验的方案:阿奇霉素对患有囊性纤维化的年轻人的影响
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Emily Granger;S. Charman;Elizabeth A. Cromwell;Gwyneth A. Davies;Freddy Frost;Alex Gifford;Bin Huang;N. Mayer;Josh Ostrenga;A. Palipana;R. Szczesniak;Jonathan Todd;Ruth H. Keogh - 通讯作者:
Ruth H. Keogh
Effectiveness of Standard vs Enhanced Self-measurement of Blood Pressure Paired With a Connected Smartphone Application: A Randomized Clinical Trial.
标准血压自我测量与增强型自我血压测量与连接的智能手机应用程序相结合的有效性:随机临床试验。
- DOI:
10.1001/jamainternmed.2022.3355 - 发表时间:
2022 - 期刊:
- 影响因子:39
- 作者:
M. Pletcher;Valy Fontil;M. Modrow;T. Carton;A. Chamberlain;Jonathan Todd;Emily C. O’Brien;Amy Sheer;E. Vittinghoff;Soo Park;Jaime Orozco;F. Lin;C. Maeztu;G. Wozniak;M. Rakotz;C. Shay;R. Cooper - 通讯作者:
R. Cooper
The Respondent-Type Matching-to-Sample Procedure: A Comparison of One-to-Many and Linear Procedure for Establishing Equivalence Responding
受访者类型匹配样本过程:用于建立等价响应的一对多和线性过程的比较
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jonathan Todd;M. Keenan;Stephen Gallagher - 通讯作者:
Stephen Gallagher
Jonathan Todd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Todd', 18)}}的其他基金
DiMethylSulfonioPropionate cycling In Terrestrial environments (DMSP InTerrest)
陆地环境中的二甲基磺丙酸循环 (DMSP InTerrest)
- 批准号:
NE/X000990/1 - 财政年份:2023
- 资助金额:
$ 47.51万 - 项目类别:
Research Grant
Organosulfur cycling in abundant anoxic marine sediments: a case study of saltmarsh sediments
丰富的缺氧海洋沉积物中的有机硫循环:盐沼沉积物的案例研究
- 批准号:
NE/S001352/1 - 财政年份:2018
- 资助金额:
$ 47.51万 - 项目类别:
Research Grant
A multidisciplinary study of DMSP production and lysis - from enzymes to organisms to process modelling.
DMSP 生产和裂解的多学科研究 - 从酶到生物体再到过程建模。
- 批准号:
NE/P012671/1 - 财政年份:2017
- 资助金额:
$ 47.51万 - 项目类别:
Research Grant
Bacteria make DMSP - how significant is this process?
细菌制造 DMSP——这个过程有多重要?
- 批准号:
NE/N002385/1 - 财政年份:2016
- 资助金额:
$ 47.51万 - 项目类别:
Research Grant
How do eukaryotic phytoplankton produce the most abundant organo-sulphur compound in the world's oceans?
真核浮游植物如何产生世界海洋中最丰富的有机硫化合物?
- 批准号:
NE/J01138X/1 - 财政年份:2012
- 资助金额:
$ 47.51万 - 项目类别:
Research Grant
相似国自然基金
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
肠道菌群介导的脱氧胆酸激活S1PR2/NLRP3/IL-1β通路在炎症性肠病合并艰难梭菌感染中的致病机制研究
- 批准号:82372306
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于压力敏感肾单位微流控芯片的肾上皮细胞CAT1-mTOR通路在梗阻性肾损伤中的作用机制研究
- 批准号:82370678
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PROCR信号通路介导的血管新生在卵巢组织移植中的作用及机制研究
- 批准号:82371726
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
cGAS-STING通路调控单核细胞活化参与Graves病发病的机制研究
- 批准号:82370787
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
GASP-1通过Myostatin信号通路调控颏舌肌功能的作用及机制研究
- 批准号:82371131
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
运用3D打印和生物反应器构建仿生尿道模型探索Hippo-YAP信号通路调控尿道损伤修复的机制研究
- 批准号:82370684
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
“肠—肝轴”PPARα/CYP8B1胆汁酸合成信号通路在减重手术改善糖脂代谢中的作用与机制
- 批准号:82370902
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
乳杆菌代谢物PolyP通过LuxS/AI-2途径调控菌斑生物膜介导的矿化失衡机制研究
- 批准号:82370941
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 47.51万 - 项目类别:
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 47.51万 - 项目类别:
Glut1+ cancer associated fibroblasts enforce a metabolic barrier to tumor T cell infiltration
Glut1癌症相关成纤维细胞增强了肿瘤T细胞浸润的代谢屏障
- 批准号:
10752508 - 财政年份:2024
- 资助金额:
$ 47.51万 - 项目类别:
Anti-Complement Immunotherapy for Pancreatic Cancer
胰腺癌的抗补体免疫治疗
- 批准号:
10751872 - 财政年份:2024
- 资助金额:
$ 47.51万 - 项目类别:
Bilirubin Catabolism induces Plasminogen-Activator Inhibitor 1 (PAI-1) worsening Metabolic Dysfunction
胆红素分解代谢诱导纤溶酶原激活剂抑制剂 1 (PAI-1) 恶化代谢功能障碍
- 批准号:
10750132 - 财政年份:2024
- 资助金额:
$ 47.51万 - 项目类别:
Function, regulation, and conservation of hypoxia-induced glycolysis condensates
缺氧诱导的糖酵解缩合物的功能、调节和保存
- 批准号:
10552295 - 财政年份:2023
- 资助金额:
$ 47.51万 - 项目类别:
Selective targeting of matrix metalloproteinases for developing preterm labor therapeutics
选择性靶向基质金属蛋白酶用于开发早产疗法
- 批准号:
10509786 - 财政年份:2023
- 资助金额:
$ 47.51万 - 项目类别:
Engineering T cells to overcome inhibitory receptor signals that limit the efficacy of adoptive cell therapy against ovarian cancer
改造 T 细胞以克服抑制性受体信号,这些信号限制了过继性细胞疗法对卵巢癌的疗效
- 批准号:
10526155 - 财政年份:2023
- 资助金额:
$ 47.51万 - 项目类别:
Decoding the functional pleiotropy of IL-20Rβ ligands in inflammation and tumorigenesis
解码 IL-20Rβ 配体在炎症和肿瘤发生中的功能多效性
- 批准号:
10350447 - 财政年份:2023
- 资助金额:
$ 47.51万 - 项目类别:
Quorum Sensing Regulation of EHEC Virulence Genes
肠出血性大肠杆菌毒力基因的群体感应调控
- 批准号:
10384063 - 财政年份:2023
- 资助金额:
$ 47.51万 - 项目类别: