A new model of the geodynamo: large-scale vortices in the Earth's core
地球发电机的新模型:地核中的大规模涡旋
基本信息
- 批准号:NE/M017893/1
- 负责人:
- 金额:$ 55.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For centuries, humans have been aware of the presence of a magnetic field on Earth because of its action on magnetised objects, such as the needle of a compass. Scientific instruments that measure its strength and direction show that the Earth's magnetic field (called the geomagnetic field) is predominantly dipolar at the Earth's surface, like the magnetic field produced by a bar magnet. The instruments further reveal that the geomagnetic field displays more complex features, such as regional patches (of about 1000km in radius) of reversed polarity. The geomagnetic field varies slowly on a human lifetime, but over the course of the Earth's history, geophysicists have shown that it varies considerably and sometimes undergoes global polarity reversals, where the north and south magnetic poles swap places. These global reversals occur a few times every million years or so. Each global reversal takes only about 5000 years, and during this time, the geomagnetic field is weak and probably disorganised. The geomagnetic field is not only crucial for navigation (used by many animals, as well as humans) but provides us with an electromagnetic shield that protects our planet from harmful solar radiation. During a global reversal, this electromagnetic shield is significantly weakened, and if a reversal occurred today it would cause tremendous damage to space satellites and electrical power grids. The last global reversal occurred about 780,000 years ago, long before the advent of our modern technologies. The magnetic field strength has been decreasing for the last 150 years, coinciding with the appearance of the regional patches of reversed polarity. Whether these reversed patches are precursors for a global reversal is unknown, as is the cause of the global reversals. To predict the changes in the geomagnetic field, which would help us limit potential destructive effects, we need to better understand the processes that generate the geomagnetic field.The geomagnetic field is generated deep inside the Earth, in the outer core, which is composed of molten iron. Motions of molten iron generate electric currents that induce the magnetic field, through a physical process called geodynamo. The geodynamo is governed by nonlinear mathematical equations, which can only be solved with the help of computers. However, even the most powerful computers struggle to model the extreme conditions that prevail in the core and its exact physical properties. Thus the computer models use strongly altered physical properties in order to make the problem solvable on present-day computers, potentially leading to inconsistencies when rescaling the results of the models to the core properties. In particular, current models find that the geodynamo is produced by motions of molten iron of only about 100m. However, theoretical arguments about the generation of the geomagnetic field imply that these motions occur on much larger spatial scales, and this conclusion is reinforced by the observation of the patches of reversed polarity that measure about 1000km across. A key mechanism is therefore missing in the current models to explain the formation of large-scale fluid motions. During my fellowship, I will address this problem by studying a new mechanism that explains how large-scale flows can form under the conditions that prevail in the Earth's core. This new mechanism is based on my recent work using a simplified computer model: I demonstrated the formation of large-scale, long-lived cyclones (somewhat similar to the tropical cyclones observed in the atmosphere) from turbulent smaller scale motions. I will study whether these cyclones can be present in the Earth's core by extending my previous results to a realistic model of the core, and whether they can produce Earth-like magnetic fields. I will then investigate whether the patches of reversed polarity are associated with these large-scale cyclones and whether they are precursors for the global reversals.
几个世纪以来,人类已经意识到地球上磁场的存在,因为它对磁性物体的作用,例如指南针。测量其强度和方向的科学仪器表明,地球的磁场(称为地磁场)在地球表面主要是偶极的,就像条形磁铁产生的磁场一样。这些仪器进一步揭示了地磁场显示出更复杂的特征,例如反极性的区域斑块(半径约1000公里)。地磁场在人的一生中变化缓慢,但在地球历史的过程中,地磁学家已经表明它变化很大,有时会经历全球极性逆转,其中北磁极和南磁极交换位置。这些全球性的逆转大约每百万年发生几次。每一次全球性的逆转只需要大约5000年,在这段时间里,地磁场是微弱的,可能是混乱的。地磁场不仅对导航至关重要(许多动物和人类都使用),而且为我们提供了电磁屏蔽,保护我们的星球免受有害的太阳辐射。在全球逆转期间,这种电磁屏蔽被显著削弱,如果今天发生逆转,将对太空卫星和电网造成巨大破坏。上一次全球逆转发生在大约78万年前,远远早于我们现代技术的出现。在过去的150年里,磁场强度一直在下降,这与极性反转的区域斑块的出现相吻合。这些逆转的斑块是否是全球逆转的前兆尚不清楚,全球逆转的原因也是如此。为了预测地磁场的变化,这将有助于我们限制潜在的破坏性影响,我们需要更好地了解产生地磁场的过程。地磁场产生于地球内部深处,在由熔融铁组成的外核。熔融铁的运动产生电流,通过一个称为地球发电机的物理过程产生磁场。地球发电机是由非线性数学方程控制的,这些方程只能在计算机的帮助下求解。然而,即使是最强大的计算机也很难模拟核心中普遍存在的极端条件及其确切的物理特性。因此,计算机模型使用了强烈改变的物理属性,以便使问题在当今的计算机上可以解决,这可能会在将模型的结果重新缩放到核心属性时导致不一致。特别是,目前的模型发现,地球发电机是由大约100米的铁水运动产生的。然而,关于地磁场产生的理论争论意味着这些运动发生在更大的空间尺度上,这一结论被观测到的大约1000公里宽的反极性斑块所加强。因此,在目前的模型中缺少一个关键的机制来解释大规模流体运动的形成。在我的研究期间,我将通过研究一种新的机制来解决这个问题,这种机制解释了在地球核心的条件下,大规模流动是如何形成的。这个新的机制是基于我最近的工作,使用一个简化的计算机模型:我证明了大规模的形成,长寿命的气旋(有点类似于在大气中观察到的热带气旋)从湍流较小的尺度运动。我将研究这些气旋是否可以存在于地球的核心,通过扩展我以前的结果,以一个现实的核心模型,以及它们是否可以产生类似地球的磁场。然后,我将调查极性反转的斑块是否与这些大规模的气旋有关,以及它们是否是全球逆转的前兆。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subcritical dynamos in rapidly rotating planar convection
- DOI:10.1103/physrevfluids.5.113702
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:R. G. Cooper;P. Bushby;C. Guervilly
- 通讯作者:R. G. Cooper;P. Bushby;C. Guervilly
Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model
- DOI:10.1017/jfm.2016.631
- 发表时间:2016-05
- 期刊:
- 影响因子:3.7
- 作者:C. Guervilly;P. Cardin
- 通讯作者:C. Guervilly;P. Cardin
Fingering Convection in the Stably Stratified Layers of Planetary Cores
行星核心稳定分层层中的指对对流
- DOI:10.1029/2022je007350
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Guervilly C
- 通讯作者:Guervilly C
Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores
行星核心准地转模型中的多重纬向喷流和对流热传输屏障
- DOI:10.1093/gji/ggx315
- 发表时间:2017
- 期刊:
- 影响因子:2.8
- 作者:Guervilly C
- 通讯作者:Guervilly C
Turbulent convective length scale in planetary cores
- DOI:10.1038/s41586-019-1301-5
- 发表时间:2019-06-20
- 期刊:
- 影响因子:64.8
- 作者:Guervilly, Celine;Cardin, Philippe;Schaeffer, Nathanael
- 通讯作者:Schaeffer, Nathanael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Celine Guervilly其他文献
Celine Guervilly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Celine Guervilly', 18)}}的其他基金
Solar and Planetary Physics at Newcastle University
纽卡斯尔大学太阳与行星物理学
- 批准号:
ST/W001039/1 - 财政年份:2022
- 资助金额:
$ 55.17万 - 项目类别:
Research Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用3D打印和生物反应器构建仿生尿道模型探索Hippo-YAP信号通路调控尿道损伤修复的机制研究
- 批准号:82370684
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于影像代谢重塑可视化的延胡索酸水合酶缺陷型肾癌危险性分层模型的研究
- 批准号:82371912
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
人胆囊源CD63+细胞的干性特征与分化特性的研究
- 批准号:31970753
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
凯莱流形上的几何流
- 批准号:11771301
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 55.17万 - 项目类别:
Studentship
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
- 批准号:
2905946 - 财政年份:2024
- 资助金额:
$ 55.17万 - 项目类别:
Studentship
A human slice model to understand the role of fibrosis in children with bladder exstrophy
人体切片模型了解纤维化在膀胱外翻儿童中的作用
- 批准号:
MR/X030946/1 - 财政年份:2024
- 资助金额:
$ 55.17万 - 项目类别:
Research Grant
Greece: Dissecting the physiological role of MscS-like mechanosensitive channels in a model filamentous fungus
希腊:剖析丝状真菌模型中类 MScS 机械敏感通道的生理作用
- 批准号:
BB/W018411/2 - 财政年份:2024
- 资助金额:
$ 55.17万 - 项目类别:
Research Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 55.17万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 55.17万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 55.17万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 55.17万 - 项目类别:
Standard Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
- 批准号:
2339556 - 财政年份:2024
- 资助金额:
$ 55.17万 - 项目类别:
Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
- 批准号:
2341110 - 财政年份:2024
- 资助金额:
$ 55.17万 - 项目类别:
Cooperative Agreement














{{item.name}}会员




