Solar and Planetary Physics at Newcastle University

纽卡斯尔大学太阳与行星物理学

基本信息

  • 批准号:
    ST/W001039/1
  • 负责人:
  • 金额:
    $ 46.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The proposed research programme consists of two projects that aim to explain some of the surprising features of the magnetic fields of the Sun and planets.In the first project, we shall address one of the fundamental questions relating to solar magnetism. The solar surface often contains dark features, known as sunspots, that are the sites of strong, localised magnetic fields. The surface distribution of sunspots follows a well-known cyclic pattern, with zones of sunspot emergence (which are restricted to low latitudes) migrating equatorwards over an 11 year period. It is believed that sunspots are the surface manifestation of an underlying large-scale magnetic field that is buried deep with the solar interior. This magnetic field is generated and maintained by the motions of the plasma within the solar interior, via a (so-called) dynamo mechanism. However, this solar dynamo process is not fully understood. Our aim is to determine the extent to which the latitudinal distributions of sunspots truly reflects the latitudinal distribution of the subsurface large-scale field (and hence the extent to which these surface observations constrain models of the solar dynamo). To achieve this, we will be studying magnetic buoyancy, which is the process by which magnetic flux is transported from the deep interior to the solar surface. This will be investigated via a combination of analytical and numerical techniques. For the first time, the initial magnetic field distributions for the numerical simulations of this process will be derived from existing dynamo models. We shall determine which of these could produce a sunspot distribution that is consistent with solar observations (which would be an important step forward for this area). A better understanding of the solar dynamo and the cyclic activity that it produces would considerably enhance our understanding of space weather and many other solar magnetic phenomena. Our second project concerns planetary magnetic fields. The magnetic field of a planet is generated deep in its interior, in the core which is composed of an electrically conducting fluid (mainly liquid iron for rocky planets and metallic hydrogen for gas giants). This conducting fluid swirls around due to convection as the planet gradually cools down. These motions generate electric currents that induce the magnetic field through a dynamo process. Planetary evolution models indicate that, in many planets of our solar system, such as Mercury, the Earth and Saturn, the outermost part of the core might not be convective, that is the mean variation of density with depth is stable to overturning convection. This stable layer is not at rest though: the density perturbations depend both on the temperature and the chemical composition of the fluid and this can lead to vertical flows. This happens in addition to horizontal flows that are driven by latitudinal variations of density. All these motions can distort the magnetic field produced deeper in the core by the dynamo effect and passing through the stable layer. The effects of the horizontal flows on the magnetic field have been studied for several decades and they are fairly well understood. In particular, they are used to explain a surprising feature of Saturn's and Mercury's magnetic fields, namely that their magnetic field is axisymmetric, i.e. it lacks longitudinally-dependent features. However, the vertical motions have never been studied before in the context of planetary cores, so we do not know what their effect is on the magnetic field. In this project, we will address this issue by studying the motions of the stable layer in computer simulations that model the outer region of the core. The main objectives of the work are to determine the size and flow speed of the motions, and to predict how they modify the planet's magnetic field.
拟议的研究计划由两个项目组成,旨在解释太阳和行星磁场的一些令人惊讶的特征。在第一个项目中,我们将解决与太阳磁性有关的基本问题之一。太阳能表面通常包含暗特征,称为黑子,它们是强,局部磁场的位置。黑子的表面分布遵循众所周知的循环模式,在11年的时间内迁移了赤道的黑子出现区(仅限于低纬度)。据信,黑子是一个基础大规模磁场的表面表现,该磁场被太阳内部埋在深处。该磁场是通过太阳能内部的血浆的运动来生成和维持的,该磁场是通过(所谓的)发电机机制生成的。但是,这种太阳能发射过程尚未完全理解。我们的目的是确定黑子的纬度分布在多大程度上反映了地下大规模场的纬度分布(因此,这些表面观测限制了太阳能发电机的模型的程度)。为了实现这一目标,我们将研究磁性浮力,这是将磁通量从深内部传输到太阳表面的过程。这将通过分析和数值技术的组合进行研究。该过程的数值模拟的初始磁场分布将首次从现有的发电机模型中得出。我们将确定其中哪一个可以产生与太阳观测一致的黑子分布(对于该区域来说将是向前迈出的重要一步)。更好地了解太阳能发电机及其产生的环状活性将大大增强我们对太空天气和许多其他太阳磁现象的理解。我们的第二个项目涉及行星磁场。行星的磁场在其内部深处产生,该芯由芯组成,该核心由电导的流体(主要是岩石行星的液态铁和气体巨头的金属氢铁)。随着行星逐渐冷却,这种传导流体由于对流而旋转。这些运动会产生通过发电机过程诱导磁场的电流。行星演化模型表明,在我们太阳系的许多行星中,例如汞,地球和土星,核心的最外部部分可能不是对流的,那就是与深度的平均密度变化相对于对流的稳定。但是,该稳定层并没有静止:密度扰动均取决于流体的温度和化学成分,这可能导致垂直流动。除了由密度的纬度变化驱动的水平流外,这种情况还会发生。所有这些运动都会通过发电机效应并穿过稳定层,使芯中产生的磁场更深。水平流对磁场的影响已经研究了几十年,并且对它们的理解相当多。特别是,它们被用来解释土星和水星的磁场的令人惊讶的特征,即它们的磁场是轴对称的,即缺乏纵向依赖的特征。但是,垂直运动从未在行星岩心的背景下进行过研究,因此我们不知道它们对磁场有什么影响。在这个项目中,我们将通过研究对核心外部区域进行建模的计算机模拟中稳定层的运动来解决此问题。工作的主要目标是确定运动的大小和流速,并预测它们如何修改行星的磁场。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fingering Convection in the Stably Stratified Layers of Planetary Cores
行星核心稳定分层层中的指对对流
  • DOI:
    10.1029/2022je007350
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guervilly C
  • 通讯作者:
    Guervilly C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Celine Guervilly其他文献

Celine Guervilly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Celine Guervilly', 18)}}的其他基金

A new model of the geodynamo: large-scale vortices in the Earth's core
地球发电机的新模型:地核中的大规模涡旋
  • 批准号:
    NE/M017893/1
  • 财政年份:
    2016
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Fellowship

相似国自然基金

CSST巡天观测与高轨道倾角小行星物理研究
  • 批准号:
    12373069
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
系外行星探测中仪器噪声的物理机制与模型研究
  • 批准号:
    12373112
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
潜在威胁小行星热物理特性统计特征研究
  • 批准号:
    12303066
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于白谱法构建的行星际扰动指数物理意义及其应用研究
  • 批准号:
    42204176
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于白谱法构建的行星际扰动指数物理意义及其应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference on Fundamental Physical Processes in Solar-Terrestrial Research and Their Relevance to Planetary Physics; Kona, Hawaii; January 7-13, 2018
日地研究基本物理过程及其与行星物理学的相关性会议;
  • 批准号:
    1753874
  • 财政年份:
    2017
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Standard Grant
MSSL Solar & Planetary Physics Consolidated Grant 2016-2019
MSSL太阳能
  • 批准号:
    ST/N000722/1
  • 财政年份:
    2016
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Research Grant
A Rolling Grant Programme of Research in Solar-Planetary Physics at the University of Leicester
莱斯特大学太阳行星物理学研究滚动资助计划
  • 批准号:
    ST/H002480/1
  • 财政年份:
    2010
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Research Grant
Rolling Grant Support for a Programme of Research in Solar-Planetary and Atmospheric Physics at the University of Leicester
对莱斯特大学太阳行星和大气物理研究项目的滚动资助
  • 批准号:
    PP/E000983/1
  • 财政年份:
    2007
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Research Grant
Studies in solar physics, planetary dynamics, and active galactic nuclei
太阳物理学、行星动力学和活动星系核的研究
  • 批准号:
    138050-1993
  • 财政年份:
    1995
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了