Solar and Planetary Physics at Newcastle University

纽卡斯尔大学太阳与行星物理学

基本信息

  • 批准号:
    ST/W001039/1
  • 负责人:
  • 金额:
    $ 46.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The proposed research programme consists of two projects that aim to explain some of the surprising features of the magnetic fields of the Sun and planets.In the first project, we shall address one of the fundamental questions relating to solar magnetism. The solar surface often contains dark features, known as sunspots, that are the sites of strong, localised magnetic fields. The surface distribution of sunspots follows a well-known cyclic pattern, with zones of sunspot emergence (which are restricted to low latitudes) migrating equatorwards over an 11 year period. It is believed that sunspots are the surface manifestation of an underlying large-scale magnetic field that is buried deep with the solar interior. This magnetic field is generated and maintained by the motions of the plasma within the solar interior, via a (so-called) dynamo mechanism. However, this solar dynamo process is not fully understood. Our aim is to determine the extent to which the latitudinal distributions of sunspots truly reflects the latitudinal distribution of the subsurface large-scale field (and hence the extent to which these surface observations constrain models of the solar dynamo). To achieve this, we will be studying magnetic buoyancy, which is the process by which magnetic flux is transported from the deep interior to the solar surface. This will be investigated via a combination of analytical and numerical techniques. For the first time, the initial magnetic field distributions for the numerical simulations of this process will be derived from existing dynamo models. We shall determine which of these could produce a sunspot distribution that is consistent with solar observations (which would be an important step forward for this area). A better understanding of the solar dynamo and the cyclic activity that it produces would considerably enhance our understanding of space weather and many other solar magnetic phenomena. Our second project concerns planetary magnetic fields. The magnetic field of a planet is generated deep in its interior, in the core which is composed of an electrically conducting fluid (mainly liquid iron for rocky planets and metallic hydrogen for gas giants). This conducting fluid swirls around due to convection as the planet gradually cools down. These motions generate electric currents that induce the magnetic field through a dynamo process. Planetary evolution models indicate that, in many planets of our solar system, such as Mercury, the Earth and Saturn, the outermost part of the core might not be convective, that is the mean variation of density with depth is stable to overturning convection. This stable layer is not at rest though: the density perturbations depend both on the temperature and the chemical composition of the fluid and this can lead to vertical flows. This happens in addition to horizontal flows that are driven by latitudinal variations of density. All these motions can distort the magnetic field produced deeper in the core by the dynamo effect and passing through the stable layer. The effects of the horizontal flows on the magnetic field have been studied for several decades and they are fairly well understood. In particular, they are used to explain a surprising feature of Saturn's and Mercury's magnetic fields, namely that their magnetic field is axisymmetric, i.e. it lacks longitudinally-dependent features. However, the vertical motions have never been studied before in the context of planetary cores, so we do not know what their effect is on the magnetic field. In this project, we will address this issue by studying the motions of the stable layer in computer simulations that model the outer region of the core. The main objectives of the work are to determine the size and flow speed of the motions, and to predict how they modify the planet's magnetic field.
拟议的研究计划包括两个项目,旨在解释太阳和行星磁场的一些令人惊讶的特征。在第一个项目中,我们将讨论与太阳磁性有关的一个基本问题。太阳表面通常包含被称为太阳黑子的黑暗特征,这些特征是强大的局部磁场的位置。太阳黑子的表面分布遵循一个众所周知的周期模式,太阳黑子出现的区域(仅限于低纬度)在11年的时间内向赤道迁移。人们认为,太阳黑子是太阳内部深埋的大规模磁场的表面表现。这个磁场是由太阳内部等离子体的运动产生和维持的,通过(所谓的)发电机机制。然而,这个太阳发电机过程还没有完全被理解。我们的目标是确定太阳黑子的纬度分布在多大程度上真实地反映了地表下大尺度场的纬度分布(从而确定这些地表观测在多大程度上限制了太阳发电机的模型)。为了实现这一目标,我们将研究磁浮力,这是磁通量从太阳内部深处传输到太阳表面的过程。这将通过分析和数值技术相结合的研究。对于第一次,初始磁场分布的数值模拟这一过程将来自现有的发电机模型。我们将确定哪一个可以产生与太阳观测一致的太阳黑子分布(这将是该领域的重要一步)。更好地了解太阳发电机及其产生的周期性活动将大大提高我们对空间天气和许多其他太阳磁现象的理解。我们的第二个项目涉及行星磁场。行星的磁场是在其内部深处产生的,在由导电流体组成的核心(主要是岩石行星的液态铁和气体巨星的金属氢)。当行星逐渐冷却下来时,由于对流,这种导电流体会旋转。这些运动产生电流,通过发电机过程感应磁场。行星演化模型表明,在太阳系的许多行星中,如水星、地球和土星,核心的最外层可能不是对流的,即密度随深度的平均变化对翻转对流是稳定的。然而,这个稳定层并不是静止的:密度扰动取决于温度和流体的化学成分,这可能导致垂直流动。除了由密度的纬度变化驱动的水平流动之外,还会发生这种情况。所有这些运动都会扭曲发电机效应在地核深处产生的磁场,并通过稳定层。水平流对磁场的影响已经研究了几十年,并且已经相当好地理解了。特别是,它们被用来解释土星和水星磁场的一个令人惊讶的特征,即它们的磁场是轴对称的,也就是说,它缺乏依赖于磁场的特征。然而,以前从未在行星核心的背景下研究过垂直运动,因此我们不知道它们对磁场的影响。在这个项目中,我们将通过研究稳定层的运动来解决这个问题,计算机模拟模拟核心的外部区域。这项工作的主要目标是确定运动的大小和流速,并预测它们如何改变行星的磁场。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fingering Convection in the Stably Stratified Layers of Planetary Cores
行星核心稳定分层层中的指对对流
  • DOI:
    10.1029/2022je007350
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guervilly C
  • 通讯作者:
    Guervilly C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Celine Guervilly其他文献

Celine Guervilly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Celine Guervilly', 18)}}的其他基金

A new model of the geodynamo: large-scale vortices in the Earth's core
地球发电机的新模型:地核中的大规模涡旋
  • 批准号:
    NE/M017893/1
  • 财政年份:
    2016
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Fellowship

相似国自然基金

The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Space and planetary physics 2022-2025
空间和行星物理学 2022-2025
  • 批准号:
    ST/W001071/1
  • 财政年份:
    2022
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Research Grant
Physics and Chemistry of Planetary Materials under Extreme Pressure and Temperature Conditions
极端压力和温度条件下行星材料的物理和化学
  • 批准号:
    RGPIN-2019-06818
  • 财政年份:
    2022
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Discovery Grants Program - Individual
Planetary Science at Oxford Physics 2022
牛津大学物理系行星科学 2022
  • 批准号:
    ST/W000938/1
  • 财政年份:
    2022
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Research Grant
Physics and Chemistry of Planetary Materials under Extreme Pressure and Temperature Conditions
极端压力和温度条件下行星材料的物理和化学
  • 批准号:
    RGPIN-2019-06818
  • 财政年份:
    2021
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Precise Ground-Based Spectrophotometry as a Lens for Planetary and Stellar Physics
职业:精确的地面分光光度测量作为行星和恒星物理的透镜
  • 批准号:
    1945633
  • 财政年份:
    2020
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Continuing Grant
Physics and Chemistry of Planetary Materials under Extreme Pressure and Temperature Conditions
极端压力和温度条件下行星材料的物理和化学
  • 批准号:
    RGPIN-2019-06818
  • 财政年份:
    2020
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Discovery Grants Program - Individual
Planetary Radiation Belt Physics
行星辐射带物理学
  • 批准号:
    ST/S000496/1
  • 财政年份:
    2019
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Research Grant
Planetary Science at Oxford Physics 2019
2019 年牛津物理系行星科学
  • 批准号:
    ST/S000461/1
  • 财政年份:
    2019
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Research Grant
Physics and Chemistry of Planetary Materials under Extreme Pressure and Temperature Conditions
极端压力和温度条件下行星材料的物理和化学
  • 批准号:
    RGPIN-2019-06818
  • 财政年份:
    2019
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Discovery Grants Program - Individual
Space and planetary physics 2019-2022
空间和行星物理学 2019-2022
  • 批准号:
    ST/S000364/1
  • 财政年份:
    2019
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了