Constraining the microbial carbon pump by characterising the chemical composition and functionality of autochthonous dissolved organic matter
通过表征本地溶解有机物的化学成分和功能来约束微生物碳泵
基本信息
- 批准号:NE/M018806/2
- 负责人:
- 金额:$ 12.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The oceans contain a massive amount of carbon (hundreds of times as much as the atmosphere) which, because it is not in the atmosphere, can't contribute to trapping heat inside the Earth system via the greenhouse effect. Therefore, we want to understand how big this pool is, what makes it and whether it is getting bigger or smaller. There are several separate processes which regulate the size of this carbon store: 1) The solubility pump: Carbon dioxide from the atmosphere just dissolves into the ocean, 2) the biological carbon pump: small marine plants grow in the surface ocean, sink and then dissolve back to carbon dioxide in the deep ocean and 3) the microbial carbon pump: some of the carbon-containing matter that marine plants make during photosynthesis is so hard to break down (recalcitrant) that it just sits in the ocean for thousands of years. Of these three we know the least about the microbial carbon pump. Because the recalcitrant matter pool is so old and the flux into it is very small we have tended to concentrate on 'pumps' other than the microbial carbon pump which have larger fluxes. But the recalcitrant matter pool is actually very big, certainly big enough that if it stopped then carbon dioxide levels in the atmosphere would increase enough over time to impact our climate. So what are the chances of it changing? Well, we don't know. We do know the pool is big and ancient, on average the matter it contains is 5,000 years old, but what we don't know in detail is how it is made. For example, do small marine plants just leak a tiny amount of their cell contents into the water or do they release a bit when they get eaten? Or do viruses and pathogens in the sea infect and kill them and cause this material to be formed? Could it be that recalcitrant matter is only made when the tiny microbes abundant in the sea eat part of the plants and release unwanted molecules? The answers to these questions are important, because the oceans are likely to change and it might be, that the key process which keeps this pool topped up gets smaller. In my proposal I plan to answer the question 'how does it get made?'. I will take common species of plants and microbes from around the oceans, especially the ones that make a lot of carbon and which form signals you can see from outer space, grow them in the lab and then kill them in a variety of ways. These include starving them to death in the dark, feeding them to their predators and infecting them with pathogens; the same ways they would die in the real world. Then I will see what sort of matter they make when they die in these different ways. My research has indicated that the way they die will affect what they release into the water column. For example, if they get eaten then whatever eats them will probably take all the nutritious matter and excrete low value waste material. I will compare this to the sort of matter found at the bottom of the ocean to see which processes are making the recalcitrant pool. One complication when doing this work is that I don't know exactly which characteristic of the organic matter will be the most suitable to use for the comparison. Because of this I will use some powerful analysis techniques that allow me to characterise the chemical makeup of every single carbon-containing molecule in a massive pool made up of thousands of different chemicals. My project will tell us which processes are important in production of recalcitrant matter and which aren't. In collaboration with modelling experts this information will be used in mathematical models which help us understand how the ocean carbon cycle works. The data I generate will help to make these models more realistic and fast and hence answer the question 'what will happen to the microbial carbon pump in a changing world?'.
海洋含有大量的碳(是大气的几百倍),因为它不在大气中,所以不能通过温室效应将热量困在地球系统中。因此,我们想知道这个池子有多大,是什么让它变得更大还是更小。有几个独立的过程可以调节碳储量的大小:1)溶解度泵:大气中的二氧化碳直接溶解到海洋中;2)生物碳泵:小型海洋植物在海洋表面生长,下沉,然后在深海中溶解回二氧化碳;3)微生物碳泵:海洋植物在光合作用过程中产生的一些含碳物质很难被分解(难以分解),以至于它们在海洋中存在了数千年。在这三者中,我们对微生物碳泵的了解最少。因为顽固性物质池太老了,进入它的通量非常小,我们倾向于把注意力集中在“泵”上,而不是通量更大的微生物碳泵。但这个顽固性物质池实际上非常大,如果它停止了,那么大气中的二氧化碳水平将随着时间的推移而增加,足以影响我们的气候。那么它改变的几率是多少呢?嗯,我们不知道。我们知道这个池子很大很古老,平均来说,它所含的物质有5000年的历史,但我们不知道它是如何形成的。例如,小型海洋植物只是将少量的细胞内容物泄漏到水中,还是在它们被吃掉时释放出一些?还是海洋中的病毒和病原体感染并杀死了它们,导致了这种物质的形成?难道只有当海洋中大量的微小微生物吃掉部分植物并释放出不需要的分子时,才会产生难降解物质吗?这些问题的答案很重要,因为海洋很可能会发生变化,而保持这个水池充盈的关键过程可能会变小。在我的提案中,我打算回答这个问题:“它是如何产生的?”我将从海洋周围选取一些常见的植物和微生物,尤其是那些产生大量碳的植物和微生物,它们形成了你可以从外太空看到的信号,我将在实验室里培育它们,然后用各种方法杀死它们。这些措施包括在黑暗中饿死它们,把它们喂给捕食者,让它们感染病原体;就像他们在现实世界中死去的方式一样。然后我要看看它们以这些不同的方式死去时会产生什么样的物质。我的研究表明,它们死亡的方式会影响它们释放到水柱中的物质。例如,如果它们被吃掉,那么吃它们的东西可能会带走所有的营养物质,排出低价值的废物。我将把它与在海底发现的那种物质进行比较,看看是哪些过程形成了这种难以抗拒的水池。做这项工作的一个复杂之处在于,我不确切地知道有机物的哪一种特性最适合用于比较。因此,我将使用一些强大的分析技术,使我能够描述由数千种不同化学物质组成的巨大池中每一个含碳分子的化学组成。我的项目将告诉我们哪些过程在产生顽固性物质中是重要的,哪些不是。在与建模专家的合作下,这些信息将用于数学模型,帮助我们了解海洋碳循环的工作原理。我生成的数据将有助于使这些模型更加真实和快速,从而回答“在变化的世界中微生物碳泵会发生什么?”这个问题。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating the Sensor-Equipped Autonomous Surface Vehicle C-Worker 4 as a Tool for Identifying Coastal Ocean Acidification and Changes in Carbonate Chemistry
- DOI:10.3390/jmse8110939
- 发表时间:2020-11-01
- 期刊:
- 影响因子:2.9
- 作者:Cryer, Sarah;Carvalho, Filipa;Evans, Claire
- 通讯作者:Evans, Claire
Shift from Carbon Flow through the Microbial Loop to the Viral Shunt in Coastal Antarctic Waters during Austral Summer.
- DOI:10.3390/microorganisms9020460
- 发表时间:2021-02-23
- 期刊:
- 影响因子:4.5
- 作者:Evans C;Brandsma J;Meredith MP;Thomas DN;Venables HJ;Pond DW;Brussaard CPD
- 通讯作者:Brussaard CPD
Control of Antarctic phytoplankton community composition and standing stock by light availability
通过光照控制南极浮游植物群落组成和现存量
- DOI:10.1007/s00300-022-03094-5
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Biggs T
- 通讯作者:Biggs T
Overestimation of prokaryotic production by leucine incorporation-and how to avoid it
- DOI:10.1002/lno.12032
- 发表时间:2022-02-08
- 期刊:
- 影响因子:4.5
- 作者:Giering, Sarah L. C.;Evans, Claire
- 通讯作者:Evans, Claire
Plasticity in dormancy behaviour of Calanoides acutus in Antarctic coastal waters
- DOI:10.1093/icesjms/fsaa042
- 发表时间:2020-09-01
- 期刊:
- 影响因子:3.3
- 作者:Biggs, Tristan E. G.;Brussaard, Corina P. D.;Pond, David W.
- 通讯作者:Pond, David W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claire Evans其他文献
A Phytochemical Study of Kalmia Polifolia, Ericaceæ
- DOI:
10.1002/jps.3080270813 - 发表时间:
1938-08-01 - 期刊:
- 影响因子:
- 作者:
Claire Evans - 通讯作者:
Claire Evans
Active and passive organic carbon fluxes during a bloom in the Southern Ocean (South Georgia)
南大洋(南乔治亚岛)一次水华期间活性和被动有机碳通量
- DOI:
10.1038/s41597-024-04151-w - 发表时间:
2024-12-18 - 期刊:
- 影响因子:6.900
- 作者:
William Major;Sarah L. C. Giering;Joanna Ainsworth;Anna Belcher;Sabena Blackbird;Martin Bridger;Nathan Briggs;Filipa Carvalho;Louis Clément;Kathryn Cook;Cynthia Dumousseaud;Benoit Espinola;Claire Evans;Sophie Fielding;Manuela Hartmann;Stephanie Henson;Morten Iversen;Konstadinos Kiriakoulakis;Richard Lampitt;Elisa Lovecchio;Adrian Martin;Dan Mayor;Mark Moore;Katsiaryna Pabortsava;Corinne Pebody;Kate Peel;Calum Preece;Alex Poulton;Rachel Rayne;Kevin Saw;Mark Stinchcombe;Gabriele Stowasser;Geraint A. Tarling;Sandy Thomalla;María Villa-Alfageme;George A. Wolff;Richard Sanders - 通讯作者:
Richard Sanders
Assessing the impact of sewage and wastewater on antimicrobial resistance in nearshore Antarctic biofilms and sediments
- DOI:
10.1186/s40793-025-00671-z - 发表时间:
2025-01-20 - 期刊:
- 影响因子:5.400
- 作者:
Melody S Clark;Benjamin H Gregson;Carla Greco;Harisree Paramel Nair;Marlon Clark;Claire Evans;Kevin A. Hughes;Kudzai Hwengwere;Marcus Leung;Lloyd S Peck;Caray A. Walker;William Chow - 通讯作者:
William Chow
Physical and Digital Environments: Engaging Fashion Design Students in Archival Research
物理和数字环境:让时装设计学生参与档案研究
- DOI:
10.7233/ijcf.2014.14.1.063 - 发表时间:
2014 - 期刊:
- 影响因子:3.9
- 作者:
Claire Evans;C. Allen;Karen Shah - 通讯作者:
Karen Shah
Factors influencing microplastic abundances in the sediments of a seagrass-dominated tropical atoll
- DOI:
10.1016/j.envpol.2024.124483 - 发表时间:
2024-09-15 - 期刊:
- 影响因子:
- 作者:
Freya Radford;Alice A. Horton;Stacey Felgate;Anna Lichtschlag;James Hunt;Valdemar Andrade;Richard Sanders;Claire Evans - 通讯作者:
Claire Evans
Claire Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claire Evans', 18)}}的其他基金
Solent to Sussex Bay Coastal Restoration Research Network
索伦特至苏塞克斯湾海岸恢复研究网络
- 批准号:
NE/X016595/1 - 财政年份:2023
- 资助金额:
$ 12.93万 - 项目类别:
Research Grant
Recovery of Seagrass for Ocean Wealth UK
英国海洋财富恢复海草
- 批准号:
NE/V01711X/1 - 财政年份:2021
- 资助金额:
$ 12.93万 - 项目类别:
Research Grant
RCUK-SEA Identifying trade-offs of changing land use for aquatic environmental and socio-economic health and facilitating sustainable solutions
RCUK-SEA 确定改变土地利用对水生环境和社会经济健康的权衡并促进可持续解决方案
- 批准号:
NE/P020917/1 - 财政年份:2017
- 资助金额:
$ 12.93万 - 项目类别:
Research Grant
Constraining the microbial carbon pump by characterising the chemical composition and functionality of autochthonous dissolved organic matter
通过表征本地溶解有机物的化学成分和功能来约束微生物碳泵
- 批准号:
NE/M018806/1 - 财政年份:2015
- 资助金额:
$ 12.93万 - 项目类别:
Fellowship
相似国自然基金
碳-铁-微生物对滩涂围垦稻田土壤团聚体形成和稳定的调控机制
- 批准号:41977088
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
水热炭的微生物陈化(Microbial-aged Hydrochar)及其对稻田氨挥发的影响机制
- 批准号:41877090
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RAPID: Investigation of Microbial:Black Carbon feedback Processes that Impact Icefield Melt in High Latitude Systems.
RAPID:影响高纬度系统中冰原融化的微生物:黑碳反馈过程的调查。
- 批准号:
2414438 - 财政年份:2024
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
- 批准号:
2312302 - 财政年份:2024
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant
K.C. Donnelly Externship - Promotion of Translational/Transdisciplinary Efforts in Graduate and Post-Doctoral Research
K.C.
- 批准号:
10797644 - 财政年份:2023
- 资助金额:
$ 12.93万 - 项目类别:
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
$ 12.93万 - 项目类别:
Doctoral Dissertation Research: Sunlight stimulates a spectrum of microbial CO2 production from permafrost carbon
博士论文研究:阳光刺激微生物从永久冻土碳中产生二氧化碳
- 批准号:
2228992 - 财政年份:2023
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant
Relating microbial community structure to functioning in soil carbon sequestration and its controlling factors
微生物群落结构与土壤固碳功能及其控制因素的关系
- 批准号:
23K14056 - 财政年份:2023
- 资助金额:
$ 12.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Targeting KLF2 in macrophages to improve immune checkpoint therapy for hepatocellular cancer
靶向巨噬细胞中的 KLF2 以改善肝细胞癌的免疫检查点治疗
- 批准号:
10677187 - 财政年份:2023
- 资助金额:
$ 12.93万 - 项目类别:
Harnessing polymicrobial interactions in the catheterized urinary tract to identify novel inhibitors of Proteus mirabilis urease activity
利用插管尿路中的多种微生物相互作用来鉴定奇异变形杆菌尿素酶活性的新型抑制剂
- 批准号:
10678389 - 财政年份:2023
- 资助金额:
$ 12.93万 - 项目类别:
The role of a bifunctional mucinase in modulating personalized gut microbiota-Vibrio cholerae interactions during infection
双功能粘蛋白酶在感染期间调节个性化肠道微生物群-霍乱弧菌相互作用中的作用
- 批准号:
10749595 - 财政年份:2023
- 资助金额:
$ 12.93万 - 项目类别:
Towards Ultrasensitive Detection of Bacterial Extracellular Electron Transfer in Human Gut by Novel Functionalized Carbon Nanotube Electrode Interfaces and Organic Microbial Electrochemical Transistor
通过新型功能化碳纳米管电极接口和有机微生物电化学晶体管对人体肠道中细菌细胞外电子转移进行超灵敏检测
- 批准号:
23K13651 - 财政年份:2023
- 资助金额:
$ 12.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists