Innovate UK Real Time Detection of Respirable Crystalline Silica (RCS)

创新英国实时检测可吸入结晶二氧化硅 (RCS)

基本信息

  • 批准号:
    NE/N004744/1
  • 负责人:
  • 金额:
    $ 9.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The concept behind this project is based on the use of spatial light scattering (SLS) analysis and related optical technologies to enable differentiation of Respirable Crystalline Silica from other ambient dust particles. It will consist of a miniature optical particle sampling chamber that will enable RCS particles to be individually identified, counted and sized separately from the background dust. When coupled with suitable data processing electronics and software to include particle loss mechanisms, density and other factors, the completed detector unit will provide a real-time output of RCS mass concentration in the environment. Being crystalline in nature, fracking sand splinters into particles that have facetted surfaces, i.e. flat mirror-like fractures, and it is this particular characteristic of RCS dust that forms the basis of the project. When passed through an illuminating light beam (such as that from a laser), faceted particles result in scattering patterns which are highly asymmetric about the beam axis, unlike virtually all other particle morphologies. This means that the Centroid of Intensity (COI), or the 'centre of gravity' of the light pattern of an RCS particle lies a significant distance from the axis, in contrast to those of other particles which are close to it. So, by setting a discrimination radius around the axis only facetted particles will be registered. RCS particles may represent a small percentage of the total particle population so a viable sensor would need a high throughput (typically ~ 10,000/second) so calculating the COI using conventional image processing techniques is impractical. Position Sensitive Devices (PSD), offer an ideal solution being low cost and producing accurate X-Y analogue outputs defining the COI of the light falling on the chip. Thus, a simple empirically-determined 'threshold' distance of the COI from the pattern centre allows differentiation of facetted particles patterns. An additional 'orthogonal' optical measurement, such as birefringence or fluorescence, will also be incorporated to provide a high discrimination level and minimize false-positive RCS detection. The project will involve close collaboration between Trolex and the Particle Instruments Research Group at the University of Hertfordshire. The University will be responsible for the sensor technology development, the design of the detection chamber and optics, and laboratory evaluation using prepared dusts. Trolex will be responsible for producing a fieldable technology demonstrator instrument that will enable the detector output to be presented as a real-time RCS density in a real-world environment.
该项目背后的概念是基于空间光散射(SLS)分析和相关光学技术的使用,以使可吸入的晶体二氧化硅与其他环境灰尘颗粒的分化。它将由一个微型光学粒子采样室组成,该室将使RCS颗粒与背景灰尘分开分别识别,计数和尺寸。当结合适当的数据处理电子和软件以包括粒子损失机制,密度和其他因素时,完整的检测器单元将提供环境中RCS质量浓度的实时输出。在本质上是结晶的,将沙子碎片压碎成具有面部表面的颗粒,即平面镜状的裂缝,而RCS粉尘的这种特殊特征则构成了项目的基础。当通过照明的光束(例如从激光器中)时,刻面颗粒会导致散射模式,这些散射模式对梁轴高度不对称,这几乎与几乎所有其他粒子形态不同。这意味着与其他接近其接近的粒子相比,RCS粒子光图的强度(COI)或RCS粒子光图的“重心”与轴的距离很大。因此,通过在轴周围设置歧视半径,只有刻面粒子将被注册。 RCS颗粒可能代表总粒子总体的一小部分,因此一个可行的传感器需要高吞吐量(通常约为10,000/秒),因此使用常规图像处理技术计算COI是不切实际的。位置敏感设备(PSD),提供理想的解决方案,即低成本,并产生准确的X-y模拟输出,以定义碎屑上落在芯片上的光的COI。因此,COI与模式中心的简单经验确定的“阈值”距离可以区分刻面颗粒模式。还将合并另一种“正交”光学测量,例如双折或荧光,以提供高歧视水平并最大程度地减少假阳性RCS检测。该项目将涉及赫特福德郡大学的Trolex与粒子工具研究小组之间的密切合作。该大学将负责传感器技术开发,检测室和光学的设计以及使用准备好的灰尘的实验室评估。 Trolex将负责生产现场技术演示器仪器,该仪器将使检测器输出能够作为实时RCS在现实世界环境中作为实时RCS密度呈现。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modelling light scattering by absorbing smooth and slightly rough facetted particles
通过吸收光滑和稍微粗糙的多面粒子来模拟光散射
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Kaye其他文献

Paul Kaye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Kaye', 18)}}的其他基金

Development of a human challenge model of Leishmania major infection as a tool for assessing vaccines against leishmaniasis
开发利什曼原虫主要感染的人类攻击模型作为评估利什曼病疫苗的工具
  • 批准号:
    MR/R014973/1
  • 财政年份:
    2018
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Research Grant
Towards a global research network for the molecular pathological stratification of leishmaniasis.
建立利什曼病分子病理分层的全球研究网络。
  • 批准号:
    MR/P024661/1
  • 财政年份:
    2017
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Research Grant
Co-ordinated Airborne Studies in the Tropics - CAST.
热带地区协调机载研究 - CAST。
  • 批准号:
    NE/J006157/1
  • 财政年份:
    2012
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Research Grant
Immunology and Immunopathology of visceral leishmaniasis
内脏利什曼病的免疫学和免疫病理学
  • 批准号:
    G1000230-E01/1
  • 财政年份:
    2011
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Research Grant
High density sensor network system for air quality studies at Heathrow airport
用于希思罗机场空气质量研究的高密度传感器网络系统
  • 批准号:
    NE/I007296/1
  • 财政年份:
    2011
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Research Grant
Industrial CASE Account - Hertfordshire 2010
工业 CASE 账户 - 赫特福德郡 2010
  • 批准号:
    EP/I50141X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Training Grant
A miniature Atmospheric Particle Classifier (APC)
微型大气颗粒分类器 (APC)
  • 批准号:
    NE/H002316/1
  • 财政年份:
    2010
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Research Grant
Industrial CASE Account - Hertfordshire 2009
工业 CASE 帐户 - 赫特福德郡 2009 年
  • 批准号:
    EP/H501274/1
  • 财政年份:
    2009
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Training Grant
Industrial CASE Account - Hertfordshire 2008
工业 CASE 帐户 - 赫特福德郡 2008 年
  • 批准号:
    EP/G501440/1
  • 财政年份:
    2008
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Training Grant
Immunopathology and the regulation of immune responses during Leishmania donovani infection
杜氏利什曼原虫感染期间的免疫病理学和免疫反应的调节
  • 批准号:
    G0400786/1
  • 财政年份:
    2006
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Research Grant

相似国自然基金

CREKA/rhPro-UK靶向载药微泡在腔内超声场下对静脉血栓的除栓作用及机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
CREKA/rhPro-UK靶向载药微泡在腔内超声场下对静脉血栓的除栓作用及机理研究
  • 批准号:
    82170516
  • 批准年份:
    2021
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
中国长白山与英国雪墩山地区泥炭地土壤酶化学计量比的生物调控机制
  • 批准号:
    42111530125
  • 批准年份:
    2021
  • 资助金额:
    9.8 万元
  • 项目类别:
    国际(地区)合作与交流项目
中国长白山与英国雪墩山地区泥炭地土壤酶化学计量比的生物调控机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
EEID:US-UK-China: 新发禽流感病毒的演进与生态传播动力学的前瞻性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    450 万元
  • 项目类别:

相似海外基金

Utilising alternative data to develop a machine learning-based artificial intelligence platform for real-time KPI tracking of UK companies for fundamental investors
利用另类数据开发基于机器学习的人工智能平台,为基本面投资者实时跟踪英国公司的 KPI
  • 批准号:
    10057969
  • 财政年份:
    2023
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Collaborative R&D
Development and validation of innovative, near real-time analytical tools to enable mitigation of contamination within cleanrooms of the UK spacecraft
开发和验证创新的近实时分析工具,以减轻英国航天器洁净室内的污染
  • 批准号:
    ST/X005356/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Training Grant
The influence of city planning policies on the effectiveness of industrial heritage regeneration processes in UK cities with developed real estate mar
房地产市场发达的英国城市规划政策对工业遗产再生过程有效性的影响
  • 批准号:
    2887311
  • 财政年份:
    2023
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Studentship
Building a Real-time Model of the UK Public Sector Procurement Industry
建立英国公共部门采购行业的实时模型
  • 批准号:
    10017810
  • 财政年份:
    2022
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Collaborative R&D
UK Fashion & Textiles: Data-driven platform, enabling manufacturing supply chain real-time decision-making, effective track & trace & sustainability
英国时尚
  • 批准号:
    92979
  • 财政年份:
    2021
  • 资助金额:
    $ 9.24万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了