Reliable Climate Projections: The Final Frontier for Stochastic Parametrisation
可靠的气候预测:随机参数化的最终前沿
基本信息
- 批准号:NE/P018238/1
- 负责人:
- 金额:$ 68.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Reliable climate projections are needed by governments and industry to make decisions in response to climate change. For example, the governmental National Flood Resilience Review, published in September 2016, used risks calculated from climate projections to evaluate how to best protect the country from extreme weather and flood events. By weighing up the cost of investment against the predicted risks, the government decided to invest in temporary protective flood barriers.However, it is likely that our current climate projections do not accurately represent the possibility of different climate outcomes. On seasonal timescales, where we can test the skilfulness of our predictions, we can see that our current models are unable to reliably predict the likelihood of different events. The shortcomings observed in seasonal forecasts will also infect climate prediction. This limits the usefulness of current climate models for decision-making.I propose to develop a new technique for representing uncertainty in climate models. This will improve our ability to predict the likelihood of different climate outcomes. The key aim is to improve the reliability of climate projections, and therefore their usefulness to decision-makers and end users.In particular, I will target uncertainty in climate prediction due to the limitations of the climate model. The process of representing the atmosphere, oceans and land-surface and their many interactions in a piece of computer code is a large source of uncertainty. Some processes in the atmosphere take place on too small a scale to be explicitly represented on the grid used by a computer model, where grid points are typically 10-100 km apart. Instead, these processes are accounted for using "parametrisation schemes".In the case of weather and seasonal forecasting, random numbers are widely used as a tool to help represent these small-scale processes in the model. These so called "stochastic" parametrisation schemes improve the consistency of the model with the underlying physical processes. The introduction of stochastic parametrisation schemes produced a step-change improvement in weather and seasonal forecasts.However, current stochastic schemes do not directly target the physical source of uncertainty. Instead they simply target the impact of the uncertainty on the forecast. While this is sufficient for short-range applications, these schemes are not mathematically rigorous, and do not necessarily conserve moisture, mass or energy over longer time periods. This is very problematic for climate prediction.My research will provide a set of new, physically motivated stochastic parametrisation schemes. By targeting uncertainty at the source, these schemes will be useful for climate projections as well as on weather and seasonal timescales.I will develop this set of new stochastic schemes by comparing a typical forecast model to a high-resolution atmospheric simulation. My project partners across Europe will provide these state-of-the-art simulations in which small-scale processes are explicitly modelled. In the forecast model, these small-scales must be represented through parametrisation schemes. By comparing the two, I will identify processes that are better represented in a probabilistic manner instead of in the traditional deterministic manner.I will initially evaluate my new schemes in weather and seasonal forecasts. This provides a way to validate the representation of fast timescale processes in the forecast model. Accurate representation of these processes is necessary for realistic climate simulation, due to the non-linear nature of the atmosphere. Having validated my new approach in this way, I will produce a probabilistic climate change projection where, for the first time, model uncertainty is accounted for in a complete and physically consistent manner.
各国政府和工业界需要可靠的气候预测来做出应对气候变化的决策。例如,政府在2016年9月发布的《国家洪水复原力评估》中,利用气候预测计算出的风险来评估如何最好地保护国家免受极端天气和洪水事件的影响。通过权衡投资成本与预测风险,政府决定投资临时防洪屏障。然而,我们目前的气候预测可能无法准确反映不同气候结果的可能性。在季节性时间尺度上,我们可以测试我们预测的技巧,我们可以看到我们目前的模型无法可靠地预测不同事件的可能性。季节性预测中观察到的缺点也会影响气候预测。这限制了当前气候模式对决策的有用性。我建议开发一种新的技术来表示气候模式中的不确定性。这将提高我们预测不同气候结果可能性的能力。主要目标是提高气候预测的可靠性,从而提高其对决策者和最终用户的实用性。特别是,由于气候模型的局限性,我将针对气候预测中的不确定性。在一段计算机代码中表示大气、海洋和陆地表面及其许多相互作用的过程是一个很大的不确定性来源。大气层中的一些过程发生的尺度太小,无法在计算机模型使用的网格上明确表示,网格点通常相距10-100公里。在天气和季节性预报方面,随机数被广泛用作一种工具,以帮助在模式中代表这些小尺度过程。这些所谓的“随机”参数化方案提高了模型与底层物理过程的一致性。随机参数化方案的引入使天气和季节预报有了逐步的改进,但是,目前的随机方案并不直接针对不确定性的物理来源。相反,他们只是针对不确定性对预测的影响。虽然这对于短距离应用是足够的,但这些方案在数学上并不严格,并且不一定在较长的时间段内保持水分、质量或能量。我的研究将提供一套新的、物理驱动的随机参数化方案。通过在源的不确定性为目标,这些计划将是有用的气候预测,以及天气和季节的时间scales.I将开发这套新的随机方案,通过比较一个典型的预测模式,高分辨率的大气模拟。我在欧洲的项目合作伙伴将提供这些最先进的模拟,其中小规模的过程被明确建模。在预报模式中,这些小尺度必须通过参数化方案来表示。通过比较这两种方法,我将找出用概率方法而不是传统的确定性方法更好地表示的过程,我将首先在天气和季节预报中评估我的新方案。这提供了一种验证预测模型中快速时间尺度过程表示的方法。由于大气的非线性性质,这些过程的精确表示对于真实的气候模拟是必要的。在以这种方式验证了我的新方法之后,我将产生一个概率气候变化预测,其中第一次以完整和物理一致的方式考虑模型的不确定性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scale-Aware Space-Time Stochastic Parameterization of Subgrid-Scale Velocity Enhancement of Sea Surface Fluxes
海面通量亚网格尺度速度增强的尺度感知时空随机参数化
- DOI:10.1029/2020ms002367
- 发表时间:2021
- 期刊:
- 影响因子:6.8
- 作者:Bessac J
- 通讯作者:Bessac J
Oxford Research Encyclopedia of Climate Science
牛津研究气候科学百科全书
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Steven Yearley
- 通讯作者:Steven Yearley
From reliable weather forecasts to skilful climate response: A dynamical systems approach
从可靠的天气预报到熟练的气候响应:动力系统方法
- DOI:10.1002/qj.3476
- 发表时间:2019
- 期刊:
- 影响因子:8.9
- 作者:Christensen H
- 通讯作者:Christensen H
The Value of Initialization on Decadal Timescales: State-Dependent Predictability in the CESM Decadal Prediction Large Ensemble
十年时间尺度上初始化的价值:CESM 十年预测大型集合中的状态相关可预测性
- DOI:10.1175/jcli-d-19-0571.1
- 发表时间:2020
- 期刊:
- 影响因子:4.9
- 作者:Christensen H
- 通讯作者:Christensen H
Stochastic Parameterization of Subgrid-Scale Velocity Enhancement of Sea Surface Fluxes
海面通量亚网格尺度速度增强的随机参数化
- DOI:10.1175/mwr-d-18-0384.1
- 发表时间:2019
- 期刊:
- 影响因子:3.2
- 作者:Bessac J
- 通讯作者:Bessac J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hannah Christensen其他文献
Carriage of Neisseria Meningitidis in Low and Middle Income Countries of the Americas and Asia: A Review of the Literature
- DOI:
10.1007/s40121-020-00291-9 - 发表时间:
2020-04-02 - 期刊:
- 影响因子:5.300
- 作者:
Lidia Serra;Jessica Presa;Hannah Christensen;Caroline Trotter - 通讯作者:
Caroline Trotter
THU328 - Updated national prevalence estimates of chronic hepatitis B virus infection in countries within the European (EU) and European Economic Area (EEA): a systematic review
THU328 - 欧洲(欧盟)和欧洲经济区(EEA)国家慢性乙型肝炎病毒感染的最新全国患病率估计:系统评价
- DOI:
10.1016/s0168-8278(22)00884-4 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:33.000
- 作者:
Sandra Bivegete;Adam Trickey;Zak Thornton;Becky Scanlan;Anna McNaughton;Aaron G. Lim;Lina Nerlander;Hannah Fraser;Josephine Walker;Matthew Hickman;Peter Vickerman;Helen Johnson;Erika Duffell;Ellen Brooks-Pollock;Hannah Christensen - 通讯作者:
Hannah Christensen
1.86 Associations of Maternal Childhood Maltreatment Experiences With Expressed Emotion Toward Partners During the Perinatal Period
- DOI:
10.1016/j.jaac.2022.09.102 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
Lillian J. Svete;Brianna Boggs;Hannah Christensen;Jacob Holzman;Jodi Zik;C. Neill Epperson;Aviva K. Olsavsky - 通讯作者:
Aviva K. Olsavsky
Model Uncertainty Intercomparison Project: Discussion of Suggested Protocol
模型不确定性比对项目:建议协议的讨论
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hannah Christensen - 通讯作者:
Hannah Christensen
On the Relationship Between Reliability Diagrams and the “Signal‐To‐Noise Paradox”
论可靠性图与“信噪悖论”的关系
- DOI:
10.1029/2023gl103710 - 发表时间:
2023 - 期刊:
- 影响因子:5.2
- 作者:
K. Strommen;Molly MacRae;Hannah Christensen - 通讯作者:
Hannah Christensen
Hannah Christensen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hannah Christensen', 18)}}的其他基金
Mesoscale Convective Systems: PRobabilistic forecasting and upscale IMpacts in the grey zonE (MCS:PRIME)
中尺度对流系统:概率预测和灰色地带的高档影响 (MCS:PRIME)
- 批准号:
NE/W005530/1 - 财政年份:2022
- 资助金额:
$ 68.37万 - 项目类别:
Research Grant
相似海外基金
Air pollution and Asthma in Canada: Projections of burden and the value of climate adaptation strategies
加拿大的空气污染和哮喘:负担预测和气候适应战略的价值
- 批准号:
485322 - 财政年份:2023
- 资助金额:
$ 68.37万 - 项目类别:
Operating Grants
Utilization and management of coastal resources in remote island areas under climate change: future projections and adaptation measures
气候变化下偏远岛屿地区沿海资源的利用和管理:未来预测和适应措施
- 批准号:
23K17069 - 财政年份:2023
- 资助金额:
$ 68.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of the health damage mitigation effect of air conditioners based on climate projections and epidemiological survey analysis in cities around the world
基于全球城市气候预测和流行病学调查分析的空调健康损害缓解效果评估
- 批准号:
23H03599 - 财政年份:2023
- 资助金额:
$ 68.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Towards an Improved Mechanistic Understanding of Dangerous Heat Extremes Affecting US Cities in the Historical Records and Future Climate Projections
改善历史记录和未来气候预测中影响美国城市的危险极端高温的机制
- 批准号:
2243602 - 财政年份:2023
- 资助金额:
$ 68.37万 - 项目类别:
Standard Grant
Insolation Gradients and Eastern Mediterranean Aridity: Impacts on Winter Storms and Implications for Climate Projections
日照梯度和东地中海干旱:对冬季风暴的影响以及对气候预测的影响
- 批准号:
2317159 - 财政年份:2023
- 资助金额:
$ 68.37万 - 项目类别:
Standard Grant
Reconciling US Southwest Hydroclimate Model Projections and Geologic Data: Constraints from the Miocene Climate Optimum
协调美国西南水文气候模型预测和地质数据:中新世气候最佳值的限制
- 批准号:
2202916 - 财政年份:2022
- 资助金额:
$ 68.37万 - 项目类别:
Standard Grant
The Fractional Energy Balance Equation, macroweather forecasts and climate projections
分数能量平衡方程、宏观天气预报和气候预测
- 批准号:
RGPIN-2022-03377 - 财政年份:2022
- 资助金额:
$ 68.37万 - 项目类别:
Discovery Grants Program - Individual
Connecting weather-related health risk and climate change projections in relation to rural health disparities
将与天气相关的健康风险和气候变化预测与农村健康差异联系起来
- 批准号:
10838844 - 财政年份:2022
- 资助金额:
$ 68.37万 - 项目类别:
Climate change impacts on Canada's Northwest Atlantic Ocean ecosystem: observations, projections, and implications
气候变化对加拿大西北大西洋生态系统的影响:观测、预测和影响
- 批准号:
RGPIN-2021-02395 - 财政年份:2022
- 资助金额:
$ 68.37万 - 项目类别:
Discovery Grants Program - Individual
Observationally-constrained climate projections following the Paris Agreement
《巴黎协定》后受观测限制的气候预测
- 批准号:
RGPIN-2017-04043 - 财政年份:2022
- 资助金额:
$ 68.37万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




