GrassCARB: a tool to identify grassland sites for enhanced soil organic carbon sequestration

GrassCARB:一种确定草原地点以增强土壤有机碳固存的工具

基本信息

  • 批准号:
    NE/R007098/1
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Farmers and their advisers collect and send soil samples for analysis to determine their soil organic matter (SOM) concentration when grassland sites across England are considered for Agri-Environment schemes. To date Natural England have a database of 10 000 soil analyses. The question they often ask is: how much soil organic matter should we expect to find in the soil in a particular field? Currently there is no effective way to answer this question. The aim of this project is to provide advisers from Natural England with a simple tool (GrassCARB) that will provide an estimate of the likely concentration of organic matter in the soil, and an estimate of the associated uncertainty. The GrassCARB model will be developed using a combination of factors which, based on published studies, are known to influence SOM concentrations in grasslands. For example, fields in low-lying, wetter areas typically have more soil organic matter than those in dry parts of the landscape. Also, soils with a larger proportion of clay-sized material tend to have larger concentrations than soils dominated by sandy (sand-sized) material. We can use this and other information from national scale datasets, and that provided with each soil analysis, to improve the predictions of SOM concentration. It is also the case that fields close together typically have more similar properties than those further apart, and so we will use the locations of measurements in the soil database in GrassCARB to improve our local predictions of SOM concentrations.Once the model has been built I will make it accessible to all the farm advisers from Natural England through a simple web-interface which they can access. Each time the model is used, SOM data from new sites can be added to it. I will test the model with a set of farm advisers and provide a set of instructions on its use. GrassCARB could then be used to identify those sites with lower than expected SOM concentrations - these are places where changes in land management could lead to storage of SOM over a few years and therefore contribute to soil carbon sequestration. This is the main objective of the 4 per mille initiative which was supported as part of the Paris climate agreement. I will investigate how GrassCARB relates to other soil initiatives in the UK and internationally.
农民和他们的顾问收集和发送土壤样本进行分析,以确定他们的土壤有机质(SOM)浓度时,英格兰各地的草地网站被认为是农业环境计划。到目前为止,自然英格兰有一个10000土壤分析的数据库。他们经常问的问题是:我们应该期望在特定领域的土壤中找到多少土壤有机质?目前还没有有效的方法来回答这个问题。该项目的目的是为自然英格兰的顾问提供一个简单的工具(GrassCARB),该工具将提供土壤中有机物可能浓度的估计,以及相关不确定性的估计。GrassCARB模型将开发使用的因素组合,根据已发表的研究,已知会影响草地中的SOM浓度。例如,低洼、潮湿地区的农田通常比干旱地区的农田含有更多的土壤有机质。此外,粘土级物质比例较大的土壤往往比桑迪(砂级)物质占主导地位的土壤具有更高的浓度。我们可以使用这个和其他信息,从国家规模的数据集,并提供与每个土壤分析,以提高SOM浓度的预测。同样的情况是,靠近的田地通常比相距较远的田地具有更多相似的属性,因此我们将使用GrassCARB土壤数据库中的测量位置来改进我们对SOM浓度的本地预测。一旦模型建立起来,我将通过一个简单的网络界面让所有来自Natural England的农场顾问都可以访问它。每次使用该模型时,都可以将新站点的SOM数据添加到其中。我将使用一组农场顾问测试该模型,并提供一组使用说明。然后,GrassCARB可以用来识别那些土壤有机质浓度低于预期的地点-这些地方的土地管理的变化可能会导致土壤有机质储存在几年内,因此有助于土壤固碳。这是千分之四倡议的主要目标,该倡议作为巴黎气候协定的一部分得到支持。我将研究GrassCARB如何与英国和国际上的其他土壤倡议联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Efrat其他文献

Nitrous oxide inhalation as sedation for flexible sigmoidoscopy.
吸入一氧化二氮作为柔性乙状结肠镜检查的镇静剂。
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Alexander Fich;Rachel Efrat;A. Sperber;Dov Wengrower;Eran Goldin
  • 通讯作者:
    Eran Goldin

Rachel Efrat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

An image-based AI tool to identify stiffness- or age-related mechanotransduction abnormalities in vascular smooth muscle cells
一种基于图像的人工智能工具,用于识别血管平滑肌细胞中与硬度或年龄相关的机械转导异常
  • 批准号:
    BB/Y513994/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Research Grant
Time series clustering to identify and translate time-varying multipollutant exposures for health studies
时间序列聚类可识别和转化随时间变化的多污染物暴露以进行健康研究
  • 批准号:
    10749341
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
  • 批准号:
    10768004
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
Molecular Tool Development to Identify, Isolate, and Interrogate the Rod Microglia Phenotype in Neurological Disease and Injury
开发分子工具来识别、分离和询问神经系统疾病和损伤中的杆状小胶质细胞表型
  • 批准号:
    10599762
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
Leveraging technology to identify outcome measures for young children with Down syndrome
利用技术确定唐氏综合症幼儿的治疗结果
  • 批准号:
    10647275
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
Exploring the Collaborative Cross resource to identify different phenotypes of Lyme neuroborreliosis and disease-contributing genetic factors
探索协作交叉资源以确定莱姆神经疏螺旋体病的不同表型和疾病致病遗传因素
  • 批准号:
    10666026
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
Threat assessment of the involuntary celibate (incel) online community: developing a structured professional judgement tool to identify incels at risk
非自愿独身者 (incel) 在线社区的威胁评估:开发结构化专业判断工具来识别面临风险的 incels
  • 批准号:
    2884204
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Studentship
SUD-t Map: A Big Data Digital Platform to Identify and Characterize SUD Treatment Opportunities to Address Health Disparities
SUD-t 地图:一个大数据数字平台,用于识别和描述 SUD 治疗机会,以解决健康差异
  • 批准号:
    10594828
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
  • 批准号:
    10696912
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
Leveraging technology to identify outcome measures for young children with Down syndrome
利用技术确定唐氏综合症幼儿的治疗结果
  • 批准号:
    10841215
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了