FREEDOM: Forecasting Risk to upland water treatment assets from the Environmental Exacerbation of Dissolved Organic Matter levels.

自由:预测溶解有机物水平环境恶化对高地水处理资产的风险。

基本信息

  • 批准号:
    NE/R009198/1
  • 负责人:
  • 金额:
    $ 17.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

The water industry faces intensifying risks to its water treatment systems from rising dissolved organic matter (DOM) concentrations in upland raw water supplies. This is leading to rising treatment costs, drinking water quality breaches, and threats to existing infrastructure. Scottish Water (SW), the industrial partner in this proposal, working with CEH, aim to address this challenge by developing an entirely new approach to understanding, managing, and planning responses to DOM increases over the next 50 years in response to environmental change. This represents a radical departure from the current water industry focus on 'managing away' rising DOM levels in supply catchments through upland restoration, which has had only limited success.Risks and costs of rising DOM levels are widespread. They affect other water companies, including United Utilities, Welsh Water and Irish Water, who, alongside SW and academic partners (Universities of Glasgow and Leeds), will form the Project Advisory Board and ensure continued relevance and impact of the project. The project will build on a modelling framework developed by CEH and harness new scientific understanding to equip SW with: 1) state-of-the-art knowledge of the consequences of future environmental change for DOM levels; 2) a web-based Decision Support System (DSS) with which to anticipate where and when treatment-related thresholds are most likely to be breached; 3) the ability to more efficiently manage water treatment assets; and, 4) a robust, long-term strategic basis for sustainable catchment planning and optimised infrastructure investment. By developing these capabilities CEH will provide SW with tools to optimise mitigation (e.g. land-use interventions) and adaption (e.g. infrastructure investment) strategies. Proposed activities and (respective Work Packages) include: finalisation of SW needs and collation of SW data in a project database (WP1); development of an existing model framework to enable forecasting of future DOM quality, quantity and Key Performance Indicators (WP2); model implementation, focussed on circa 100 SW supply catchments (WP3), generation of a spatially explicit model of current and future DOM concentrations across the UK uplands according to climate change and air pollution scenarios (WP4); and, development of the DSS incorporating web-based tools, to provide a front-end for model outputs for use by SW, and enable forecasting of future annual average and seasonal extreme raw water DOM concentrations and quality, and Key Performance Indicators (KPIs) (WP5). Additional funding from SW will support collection of new data to assist in model parameterisation and testing. CEH will work with SW to implement the prototype DSS, initially for a subset of 'exemplar' sites to test and subsequently showcase the application of the tool, before scaling up to the full set of catchments from WP2. Consequences for SW's KPIs will then be assessed for a range of environmental scenarios and mitigation strategies. Results will be disseminated by a CEH in a series of briefing notes to SW and through the DSS directly. Exemplar studies will be presented to the wider water industry at the end-of-project dissemination meeting. At this point other water industry partners will be given the opportunity to engage in a future beta-test of the DSS, and work more closely with CEH and each other in developing further iterations and functionality.Ultimately, the project aims to transform approaches to rising DOM across the UK water industry, and potentially internationally.Project duration will be 18 months. During this time, SW will independently fund a parallel project of new data collection that will help to strengthen the empirical basis and parameterisation of the model to support future use. The total cost of the project, at 80%FEC will be £135,595, with £75,000 from SW to support supplementary sampling.
由于高地原水供应中溶解有机物 (DOM) 浓度不断上升,水务行业的水处理系统面临着越来越大的风险。这导致处理成本上升、饮用水质量违规以及对现有基础设施的威胁。该提案的工业合作伙伴苏格兰水务公司 (SW) 与 CEH 合作,旨在通过开发一种全新的方法来理解、管理和规划未来 50 年内 DOM 增加的应对措施,以应对这一挑战,以应对环境变化。这与当前水行业的重点是通过高地恢复来“控制”供水流域中不断上升的 DOM 水平完全背离,而这种做法只取得了有限的成功。DOM 水平上升的风险和成本是普遍存在的。它们影响了其他水务公司,包括联合公用事业公司、威尔士水务公司和爱尔兰水务公司,这些公司将与 SW 和学术合作伙伴(格拉斯哥大学和利兹大学)一起组建项目咨询委员会,并确保该项目的持续相关性和影响力。该项目将建立在 CEH 开发的建模框架的基础上,并利用新的科学理解为 SW 提供: 1)关于未来环境变化对 DOM 水平的影响的最新知识; 2)基于网络的决策支持系统(DSS),用于预测最有可能突破治疗相关阈值的地点和时间; 3)更有效地管理水处理资产的能力; 4) 可持续流域规划和优化基础设施投资的稳健、长期战略基础。通过开发这些能力,CEH 将为 SW 提供优化缓解(例如土地使用干预)和适应(例如基础设施投资)策略的工具。拟议的活动和(各自的工作包)包括: 最终确定软件需求并在项目数据库(WP1)中整理软件数据;开发现有模型框架,以预测未来 DOM 质量、数量和关键绩效指标 (WP2);模型实施,重点关注约 100 个 SW 供应集水区 (WP3),根据气候变化和空气污染情景生成英国高地当前和未来 DOM 浓度的空间明确模型 (WP4);开发包含基于网络的工具的 DSS,为 SW 使用的模型输出提供前端,并能够预测未来年平均和季节性极端原水 DOM 浓度和质量以及关键绩效指标 (KPI) (WP5)。 SW 提供的额外资金将支持新数据的收集,以协助模型参数化和测试。 CEH 将与 SW 合作实施原型 DSS,最初针对“范例”站点的子集进行测试,随后展示该工具的应用,然后再扩展到 WP2 的全套流域。然后,SW 的 KPI 的后果将针对一系列环境情景和缓解策略进行评估。结果将由 CEH 在向 SW 提交的一系列简报中发布,并直接通过 DSS 发布。范例研究将在项目结束传播会议上提交给更广泛的水行业。此时,其他水行业合作伙伴将有机会参与 DSS 的未来 Beta 测试,并与 CEH 以及彼此更密切地合作,开发进一步的迭代和功能。最终,该项目旨在改变整个英国水行业(甚至可能是国际水行业)提高 DOM 的方法。项目持续时间将为 18 个月。在此期间,SW 将独立资助一个新数据收集的并行项目,该项目将有助于加强模型的经验基础和参数化,以支持未来的使用。按 80% FEC 计算,该项目的总成本为 135,595 英镑,其中 SW 提供 75,000 英镑用于支持补充采样。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Will UK peatland restoration reduce dissolved organic matter concentrations in upland drinking water supplies?
  • DOI:
    10.5194/hess-2020-450
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jennifer Williamson;C. Evans;B. Spears;A. Pickard;P. Chapman;H. Feuchtmayr;F. Leith;D. Monteith
  • 通讯作者:
    Jennifer Williamson;C. Evans;B. Spears;A. Pickard;P. Chapman;H. Feuchtmayr;F. Leith;D. Monteith
Understanding the impacts of peatland catchment management on DOM concentration and treatability
了解泥炭地流域管理对 DOM 浓度和可处理性的影响
  • DOI:
    10.5194/bg-2022-209
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Williamson J
  • 通讯作者:
    Williamson J
Reviews and syntheses: Understanding the impacts of peatland catchment management on dissolved organic matter concentration and treatability
  • DOI:
    10.5194/bg-20-3751-2023
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Jenny Williamson;Chris D. Evans;Bryan M. Spears;Amy Pickard;P. Chapman;H. Feuchtmayr;F. Leith;Susan Waldron;Don Monteith
  • 通讯作者:
    Jenny Williamson;Chris D. Evans;Bryan M. Spears;Amy Pickard;P. Chapman;H. Feuchtmayr;F. Leith;Susan Waldron;Don Monteith
Long-term rise in riverine dissolved organic carbon concentration is predicted by electrolyte solubility theory.
  • DOI:
    10.1126/sciadv.ade3491
  • 发表时间:
    2023-01-18
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Monteith, Donald T.;Henrys, Peter A.;Hruska, Jakub;de Wit, Heleen A.;Kram, Pavel;Moldan, Filip;Posch, Maximilian;Raike, Antti;Stoddard, John L.;Shilland, Ewan M.;Pereira, M. Gloria;Evans, Chris D.
  • 通讯作者:
    Evans, Chris D.
FREEDOM: Forecasting Risks to upland water treatment assets from the Environmental Exacerbation of Dissolved Organic Matter levels. Report to Scottish Water.
自由:预测溶解有机物水平环境恶化对高地水处理资产造成的风险。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Monteith DT
  • 通讯作者:
    Monteith DT
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Monteith其他文献

Donald Monteith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Monteith', 18)}}的其他基金

Forecasting Risk of Environmental Exacerbation of Dissolved Organic Matter - Building Climate Change Resilience (FREEDOM-BCCR)
预测溶解有机物环境恶化的风险 - 增强气候变化抵御能力 (FREEDOM-BCCR)
  • 批准号:
    NE/S016937/2
  • 财政年份:
    2019
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Research Grant
Forecasting Risk of Environmental Exacerbation of Dissolved Organic Matter - Building Climate Change Resilience (FREEDOM-BCCR)
预测溶解有机物环境恶化的风险 - 增强气候变化抵御能力 (FREEDOM-BCCR)
  • 批准号:
    NE/S016937/1
  • 财政年份:
    2019
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Research Grant
Environmental change and rising DOC trends: Implications for public health
环境变化和 DOC 上升趋势:对公共卫生的影响
  • 批准号:
    NE/G002894/1
  • 财政年份:
    2009
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Research Grant

相似海外基金

SBIR Phase I: Subseasonal Forecasting and Climate Risk Analytics Combining Physics and AI
SBIR 第一阶段:结合物理和人工智能的次季节预报和气候风险分析
  • 批准号:
    2335210
  • 财政年份:
    2024
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Standard Grant
Developing Advanced Warnings and Forecasting Satellite Surface Charging Risk
开发高级预警并预测卫星表面充电风险
  • 批准号:
    573087-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.46万
  • 项目类别:
    University Undergraduate Student Research Awards
Towards an integrated data-driven flood risk forecasting framework
建立综合数据驱动的洪水风险预测框架
  • 批准号:
    547587-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Financial Risk Factors with Graph Learning-based Risk Forecasting
金融风险因素与基于图学习的风险预测
  • 批准号:
    2753236
  • 财政年份:
    2022
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Studentship
Towards an integrated data-driven flood risk forecasting framework
建立综合数据驱动的洪水风险预测框架
  • 批准号:
    547587-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
RAPID: Real-time Forecasting of COVID-19 risk in the USA
RAPID:美国 COVID-19 风险的实时预测
  • 批准号:
    2108526
  • 财政年份:
    2021
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Standard Grant
Machine-Cast: A scalable machine learning framework for forecasting risk of crop pests and pathogens
Machine-Cast:用于预测农作物病虫害和病原体风险的可扩展机器学习框架
  • 批准号:
    10005703
  • 财政年份:
    2021
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Collaborative R&D
SBIR Phase II: Physics-Informed Machine Learning Emulators to Model Physical Spatio-Temporal Processes for Climate and Weather Risk Forecasting
SBIR 第二阶段:基于物理的机器学习模拟器,用于模拟气候和天气风险预测的物理时空过程
  • 批准号:
    1951266
  • 财政年份:
    2020
  • 资助金额:
    $ 17.46万
  • 项目类别:
    Standard Grant
Forecasting Lung Transplant Benefit: A Dynamic Risk Modeling Approach
预测肺移植效益:动态风险建模方法
  • 批准号:
    10407519
  • 财政年份:
    2020
  • 资助金额:
    $ 17.46万
  • 项目类别:
Forecasting Lung Transplant Benefit: A Dynamic Risk Modeling Approach
预测肺移植效益:动态风险建模方法
  • 批准号:
    10028953
  • 财政年份:
    2020
  • 资助金额:
    $ 17.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了