RAPID: Real-time Forecasting of COVID-19 risk in the USA

RAPID:美国 COVID-19 风险的实时预测

基本信息

  • 批准号:
    2108526
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-15 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

In an effort to support decision making by governments and individuals related to the COVID-19 pandemic, the researchers will develop a set of epidemic forecast models to accurately assess the risk presented by COVID-19 in the United States at county, state, and national levels. The models will build on epidemiological data from the CSSE team’s publicly available COVID-19 tracking map, along with anonymized mobile phone data, demographic and socioeconomic information, climate and seasonality factors, and various health and behavioral metrics. The modeling framework will be flexible, and thus able to provide decision support for various policy needs and mitigation strategies. The team will make concerted efforts to maximize the model’s usefulness to decision-makers and ensure the successful translation of modeling outcomes into useful actions. In the short term, the model outputs generated by the team will contribute to the CDC’s COVID-19 national forecasting efforts through the COVID-19 Forecast Hub. In the long term, the systems engineering approach to this research effort will contribute to the establishment of a robust, vetted set of tools that can be used for epidemic forecasting, prior to and during the next pandemic. This project will also support the training of graduate students. The forecasting model will utilize an empirical machine learning approach that combines disparate data inputs into a meaningful predictive model using a combination of raw data and novel metrics generated in-house as inputs. The research team will explore, evaluate and compare the performance of different statistical methodologies for answering different proposed modeling objectives, in addition to developing new techniques to further improve predictive capabilities such as ensemble approaches and input clustering. Various combinations of methodologies and research objectives will be considered and optimized to find the best pairing. The team will make a concerted effort to continually validate the model based on observed data, and in response, continue to refine the model to both increase the accuracy of the predictions and infer the most important factors driving the outbreak, thus improving our general understanding of COVID-19 transmission risk. The proposed modeling effort will simultaneously build on the research team’s ongoing data collection effort that supports the JHU CSSE COVID-19 Dashboard and data set, and thus enable the team to further improve the quality of the data, as well as improve the communication, documentation, and management of the dataset, which has become the authoritative source of COVID-19 case and death data globally serves as the foundation for national and local level COVID-19 modeling conducted by dozens of research teams, governmental organizations and public health agencies around the world.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了支持政府和个人做出与COVID-19大流行相关的决策,研究人员将开发一套流行病预测模型,以准确评估COVID-19在美国县、州和国家层面带来的风险。这些模型将建立在CSSE团队公开的COVID-19跟踪地图的流行病学数据基础上,沿着匿名移动的电话数据、人口和社会经济信息、气候和季节性因素以及各种健康和行为指标。建模框架将是灵活的,因此能够为各种政策需求和缓解战略提供决策支持。 该团队将共同努力,最大限度地提高模型对决策者的有用性,并确保将建模结果成功转化为有用的行动。在短期内,该团队生成的模型输出将通过COVID-19 Forecast Hub为CDC的COVID-19国家预测工作做出贡献。从长远来看,这项研究工作的系统工程方法将有助于建立一套强大的、经过审查的工具,可用于在下一次大流行之前和期间进行流行病预测。该项目还将支持研究生的培训。预测模型将利用经验机器学习方法,将不同的数据输入组合成一个有意义的预测模型,使用原始数据和内部生成的新指标作为输入。研究团队将探索,评估和比较不同统计方法的性能,以满足不同的建模目标,此外还将开发新技术以进一步提高预测能力,如集成方法和输入聚类。各种方法和研究目标的组合将被考虑和优化,以找到最佳的配对。该团队将共同努力,根据观察到的数据不断验证模型,并作为回应,继续完善模型,以提高预测的准确性并推断推动疫情爆发的最重要因素,从而提高我们对COVID-19传播风险的总体理解。 拟议的建模工作将同时建立在研究团队正在进行的数据收集工作的基础上,该工作支持JHU CSSE COVID-19仪表板和数据集,从而使团队能够进一步提高数据的质量,并改善数据集的沟通,文档和管理,已成为全球COVID-19病例和死亡数据的权威来源,是数十个研究团队进行的国家和地方COVID-19建模的基础,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lauren Gardner其他文献

Training Law Enforcement Officers About Autism: Evaluation of Adding Virtual Reality or Simulation to a Traditional Training Approach
The Psychotherapy Experience of Pagans: a Narrative Phenomenological Inquiry.
异教徒的心理治疗经验:叙事现象学探究。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lauren Gardner
  • 通讯作者:
    Lauren Gardner
Snapshots of acyl carrier protein shuttling in human fatty acid synthase
人脂肪酸合酶中酰基载体蛋白穿梭的快照
  • DOI:
    10.1038/s41586-025-08587-x
  • 发表时间:
    2025-02-20
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Kollin Schultz;Pedro Costa-Pinheiro;Lauren Gardner;Laura V. Pinheiro;Julio Ramirez-Solis;Sarah M. Gardner;Kathryn E. Wellen;Ronen Marmorstein
  • 通讯作者:
    Ronen Marmorstein
Exploring a diverse set of specifications related to associations between adolescent smoking, vaping, and emotional problems: a multiverse analysis
探索一系列与青少年吸烟、吸电子烟和情绪问题之间的关联相关的不同规范:一项多元宇宙分析
  • DOI:
    10.1016/j.addbeh.2025.108380
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Jillian Halladay;Rachel Visontay;Matthew Sunderland;Amy-Leigh Rowe;Scarlett Smout;Emma Devine;Emily Stockings;Jack L. Andrews;Katrina E. Champion;Lauren Gardner;Nicola Newton;Maree Teesson;Tim Slade
  • 通讯作者:
    Tim Slade
Law enforcement officers’ interactions with autistic individuals: Commonly reported incidents and use of force
  • DOI:
    10.1016/j.ridd.2022.104371
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lauren Gardner;Charles Cederberg;Jason Hangauer;Jonathan M. Campbell
  • 通讯作者:
    Jonathan M. Campbell

Lauren Gardner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lauren Gardner', 18)}}的其他基金

RAPID: Real-time Forecasting Models for Hospitalizations of Infectious Disease in the USA
RAPID:美国传染病住院实时预测模型
  • 批准号:
    2333435
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAISE: IHBEM: Modeling Dynamic Disease-Behavior Feedbacks for Improved Epidemic Prediction and Response
RAISE:IHBEM:对动态疾病行为反馈进行建模以改进流行病预测和应对
  • 批准号:
    2229996
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
RAPID: Development of an Interactive Web-based Dashboard to Track COVID-19 in Real-time
RAPID:开发基于网络的交互式仪表板来实时跟踪 COVID-19
  • 批准号:
    2028604
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Workshop on Emerging Technologies for Integrated Surveillance and Diagnosis of Infectious Disease and Bio-Secuity Threats; March, 2020; Johns Hopkins Center for Health Security
传染病和生物安全威胁综合监测和诊断新兴技术研讨会;
  • 批准号:
    1947492
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Rapid Acute Leukemia Genomic Profiling with CRISPR enrichment and Real-time long-read sequencing
利用 CRISPR 富集和实时长读长测序进行快速急性白血病基因组分析
  • 批准号:
    10839678
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Rapid Acute Leukemia Genomic Profiling with CRISPR enrichment and Real-time long-read sequencing
利用 CRISPR 富集和实时长读长测序进行快速急性白血病基因组分析
  • 批准号:
    10651543
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
RAPID: Real-time Forecasting Models for Hospitalizations of Infectious Disease in the USA
RAPID:美国传染病住院实时预测模型
  • 批准号:
    2333435
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
  • 批准号:
    10854070
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Ultra-Rapid RF-Based Beam Monitor for Real-Time FLASH Beam Control
用于实时闪光光束控制的基于射频的超快速光束监视器
  • 批准号:
    10714368
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
RAPID: ReAl-time Process ModellIng and Diagnostics: Powering Digital Factories
RAPID:实时过程建模和诊断:为数字工厂提供动力
  • 批准号:
    EP/V02860X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
RAPID: ReAl-time Process ModellIng and Diagnostics: Powering Digital Factories
RAPID:实时过程建模和诊断:为数字工厂提供动力
  • 批准号:
    EP/V028618/1
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Rapid, High-Throughput, and Real-time Assessment of Antibiotic Effectiveness against Pathogenic Biofilms
快速、高通量、实时评估抗生素对致病性生物膜的有效性
  • 批准号:
    2100757
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Liquid Biopsy for Rapid Detection and Real Time Monitoring of FGFR-altered Cancers
液体活检用于快速检测和实时监测 FGFR 改变的癌症
  • 批准号:
    10922903
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
  • 批准号:
    10273983
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了