RamaCam - In situ holographic imaging and chemical spectroscopy for long term scalable analysis of marine particles in deep-sea environments

RamaCam - 原位全息成像和化学光谱,用于深海环境中海洋颗粒的长期可扩展分析

基本信息

  • 批准号:
    NE/R012288/1
  • 负责人:
  • 金额:
    $ 10.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

While modern day ocean sensors are capable of measuring the concentration of chemicals dissolved in seawater to such high sensitivities that we rarely need to sample them, many chemicals form tiny particles in seawater, often with diameters smaller than the width of a human hair, and these act as a blind spot for most of today's sensors. The only way to study these particles in detail, is to recover samples and analyse them in a laboratory. Marine particles include plankton, dead skin shed from whales and fish, faecal pellets as well as micro-plastics and other types of human litter. If you took a bottle of seawater from the surface of the ocean and compared it to seawater from the deep-sea, the number of large particles would be much higher in the surface water, because light from the sun provides energy that can be used by plankton, which form a large proportion of the particles where sunlight can reach within 200 m of the ocean surface. At the same time, we also know that most particles sink, and so it is important for us to understand why there are so few particles in the deep-sea, how much material is sinking to the seafloor, what it is made out of, how fast it sinks, and what proportion of it makes it back up to the sea surface or gets washed on-shore. The reason this is important, is that particles that sink to the seafloor are thought to play an important role in removing carbon from our atmosphere. At the same time, scientists are worried that litter and plastics may accumulate on the seafloor and damage the fragile seafloor ecosystems that exist at an average depth of more than 3800 m below the ocean's surface.The aim of this project, is to demonstrate new ways in which we can improve our ability to study the distribution of different types of particles in the deep-sea. The sensor that will be developed will analyse large volumes of seawater, almost 2/3 of a drinks can a second, in order to gather data in the deep-sea where the relative number of particles is small. The sensor will count the number of particles that pass through it, study their appearance and also perform laser based chemical analysis to identify what these particles are made out of. An important aspect of this work is to achieve this in a compact, low power way. The last point is important to allow large numbers of this new type of sensor to be used to study vast regions of the ocean for several years at a time. This innovative work will be carried out by researchers based in the UK and in Japan, both island nations with a long history of marine research, who will combine their expertise to overcome the difficult challenges that are involved in achieving our goal. By helping researchers in the future achieve a better understanding how particles in the ocean behave, and this can in turn help our governments decide what kinds of policies need to be put in place to preserve our ocean and our atmosphere.
虽然现代海洋传感器能够测量溶解在海水中的化学物质的浓度,而我们很少需要对它们进行采样的高敏感性,但许多化学物质在海水中形成微小的颗粒,通常比人毛的宽度小于人毛的宽度,而对于当今大多数传感器来说,这些化学物质是盲人的。详细研究这些颗粒的唯一方法是在实验室中恢复样品并分析样品。海洋颗粒包括浮游生物,鲸鱼和鱼的死皮,粪便颗粒以及微型塑料和其他类型的人类垃圾。如果您从海面取一瓶海水并将其与深海的海水进行了比较,那么地表水中的大颗粒数量会更高,因为来自太阳的光提供了浮游生物可以使用的能量,浮游生物可以使用,这些颗粒形成很大比例的颗粒,其中阳光可以在200 m内到达海洋表面200 m。同时,我们还知道大多数颗粒都会下沉,因此,重要的是要了解为什么深海中的颗粒很少,材料沉入了海底多少,它的制成的东西,下沉的速度以及它的比例使它备份到海面上的比例又备份到海面或在岸上洗涤。这很重要的是,沉入海底的颗粒被认为在从我们的大气中去除碳中起着重要作用。同时,科学家担心垃圾和塑料可能会积聚在海底上,并损害脆弱的海底生态系统,而海底生态系统的平均深度超过海洋表面的3800 m以上。该项目的目的是展示我们可以改善深层研究不同类型粒子分布的新方式。将要开发的传感器将分析大量海水,几乎2/3饮料可以一秒钟,以便在颗粒相对数量很小的深海中收集数据。传感器将计算通过它的颗粒数量,研究其外观并进行基于激光的化学分析,以识别这些颗粒由什么制成的。这项工作的一个重要方面是以紧凑的低功率方式实现这一目标。最后一点对于允许大量这种新型传感器一次用于研究海洋地区几年。这项创新的工作将由英国和日本的研究人员进行,这两个岛国都有悠久的海洋研究历史,他们将结合他们的专业知识,以克服实现我们目标所涉及的艰难挑战。通过帮助未来的研究人员可以更好地了解海洋中的颗粒方式,这可以帮助我们的政府确定需要制定哪种政策来保护我们的海洋和气氛。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of microplastics in a large water volume by integrated holography and Raman spectroscopy
  • DOI:
    10.1364/ao.393643
  • 发表时间:
    2020-06-10
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Takahashi, Tomoko;Liu, Zonghua;Thornton, Blair
  • 通讯作者:
    Thornton, Blair
Digital In-Line Holography for Large-Volume Analysis of Vertical Motion of Microscale Marine Plankton and Other Particles
  • DOI:
    10.1109/joe.2021.3066788
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Liu, Zonghua;Takahashi, Tomoko;Thornton, Blair
  • 通讯作者:
    Thornton, Blair
Multimodal image and spectral feature learning for efficient analysis of water-suspended particles.
  • DOI:
    10.1364/oe.470878
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Tomoko Takahashi;Zonghua Liu;T. Thevar;N. Burns;D. Lindsay;John Watson;Sumeet Mahajan;Satoru Yukioka;Shuhei Tanaka;Yukiko Nagai;B. Thornton
  • 通讯作者:
    Tomoko Takahashi;Zonghua Liu;T. Thevar;N. Burns;D. Lindsay;John Watson;Sumeet Mahajan;Satoru Yukioka;Shuhei Tanaka;Yukiko Nagai;B. Thornton
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thangavel Thevar其他文献

共振周波数追従制御を適用した水中探査機向け非接触給電システムの負荷電圧特性の検討
谐振频率跟踪控制水下探测器非接触供电系统负载电压特性研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoko Takahashi;Zonghua Liu;Thangavel Thevar;Nicholas Burns;Sumeet Mahajan;Dhugal Lindsay John Watson;Blair Thornton;米田昇平,木船弘康;髙橋朋子;水野隆志,木船弘康,米田昇平;Tomoko Takahashi;米田昇平,木船弘康;米田昇平,木船弘康
  • 通讯作者:
    米田昇平,木船弘康
共振回路の周波数特性を活用した水中非接触給電システムの検討
利用谐振电路频率特性的水下无线电力传输系统的研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoko Takahashi;Zonghua Liu;Thangavel Thevar;Nicholas Burns;Sumeet Mahajan;Dhugal Lindsay John Watson;Blair Thornton;米田昇平,木船弘康;髙橋朋子;水野隆志,木船弘康,米田昇平;Tomoko Takahashi;米田昇平,木船弘康;米田昇平,木船弘康;Tomoko Takahashi;池原徹,木船弘康,米田昇平;米田昇平,木船弘康
  • 通讯作者:
    米田昇平,木船弘康
電磁誘導型非接触給電における力率補償コンデンサの接続方式と共振周波数の検討
电磁感应式非接触电源功率因数补偿电容器连接方法及谐振频率研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoko Takahashi;Zonghua Liu;Thangavel Thevar;Nicholas Burns;Sumeet Mahajan;Dhugal Lindsay John Watson;Blair Thornton;米田昇平,木船弘康
  • 通讯作者:
    米田昇平,木船弘康
Identification of microplastics in water by hyphenated-Raman techniques
通过联用拉曼技术鉴定水中的微塑料
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoko Takahashi;Zonghua Liu;Thangavel Thevar;Nicholas Burns;Sumeet Mahajan;Dhugal Lindsay John Watson;Blair Thornton;米田昇平,木船弘康;髙橋朋子;水野隆志,木船弘康,米田昇平;Tomoko Takahashi
  • 通讯作者:
    Tomoko Takahashi
水中探査機向け非接触給電システムの共振回路構成の検討
水下探测器非接触供电系统谐振电路结构研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoko Takahashi;Zonghua Liu;Thangavel Thevar;Nicholas Burns;Sumeet Mahajan;Dhugal Lindsay John Watson;Blair Thornton;米田昇平,木船弘康;髙橋朋子;水野隆志,木船弘康,米田昇平;Tomoko Takahashi;米田昇平,木船弘康
  • 通讯作者:
    米田昇平,木船弘康

Thangavel Thevar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于全息技术的海洋三维湍流场原位观测系统研发
  • 批准号:
    42306032
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
原位微型海洋浮游生物全息宽场高分辨成像方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
原位微型海洋浮游生物全息宽场高分辨成像方法研究
  • 批准号:
    62175013
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
数字全息术原位研究金属锂负极界面反应机理
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
全息光聚合诱导的纳米晶原位生成与有序复合
  • 批准号:
    51903097
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RamaCam - In situ holographic imaging and chemical spectroscopy for long term scalable analysis of marine particles in deep-sea environments
RamaCam - 原位全息成像和化学光谱,用于深海环境中海洋颗粒的长期可扩展分析
  • 批准号:
    NE/R01227X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Research Grant
Ex situ conservation programmes utilizing the behavioral plasticity in environmental manipulationen for dangered sea turtles
利用行为可塑性来控制危险海龟的环境的易地保护计划
  • 批准号:
    17H04720
  • 财政年份:
    2017
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Proposal of guidelines to prevent genetic deterioration due to ex situ conservation-for an extinct species in the wild, Eriocaulon heleocharioides
防止因迁地保护导致遗传退化的指南提案——针对野生灭绝物种谷精草
  • 批准号:
    17K07275
  • 财政年份:
    2017
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Autonomous holographic imaging system for long term in situ studies of marine particle dynamics.
用于海洋粒子动力学长期原位研究的自主全息成像系统。
  • 批准号:
    1634053
  • 财政年份:
    2016
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Continuing Grant
Ex situ conservation programmes utilizing the plasticity of the remigration for endangered loggerhead turtles
利用濒临灭绝的红海龟重新迁徙的可塑性进行易地保护计划
  • 批准号:
    15K20920
  • 财政年份:
    2015
  • 资助金额:
    $ 10.35万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了