Satellite data for Weather Index Insurance-AgricuLtural EaRly warning system (SatWIN-ALERT)

天气指数保险-农业预警系统 (SatWIN-ALERT) 的卫星数据

基本信息

  • 批准号:
    NE/R014116/1
  • 负责人:
  • 金额:
    $ 42.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

For the more than 200 million farmers in Africa who depend on rain-fed agriculture, drought is a matter of life and death. Their vulnerability is often aggravated by a lack of access to risk management tools such as insurance, which also limits their ability to take productive risks on their farms. Index insurance, where compensation is based on weather or area yield metrics, rather than on measured losses, is an affordable alternative to traditional insurance. However, index insurance will only increase resilience to climate shocks if the index insured fairly reflects the risk for both farmers and insurers. Index design processes are becoming increasingly sophisticated, utilizing multiple data-sources and models. A certain degree of basis risk (where compensation doesn't match observed losses) is, however, inevitable as insurance is not designed to target every risk. Anticipating basis risk that ensues from the complexity in the relationship between meteorological drought (rainfall deficit) and agricultural drought (soil moisture deficit) is a key challenge for the agricultural insurance sector. We propose a new system, SatWIN-ALERT, which can be deployed in real time to detect and predict basis risk events as they happen. As such, it could unlock in-season actions (such as increased monitoring), or allow timely post-season index assessment or action, enabling aid agencies and governments to anticipate basis risk events, and take action to support farmers who are facing uncompensated agricultural losses. In effect, the facility to predict pay outs and losses bridges the gap between post hoc index insurance and forecast-based finance. SatWIN-ALERT provides a means of combining the data issued by existing platforms into integrated assessments of droughts and subsequent compensation. As such, it can be integrated into well-established and trusted insurance design systems, such as the ARC risk viewer (ARV) or the IRI Social Network for Index Insurance Design (SNIID). SatWIN-ALERT builds on existing state-of-the-art practices to take a sophisticated approach to basis risk management, allowing index insurance to play an improved role within climate risk management and development. We also bring together novel existing participatory and meteorological research to build systems that are suitable for operational use in ODA countries. To do this, we draw on fundamental research on monitoring of environmental conditions, and on recent improvements in forecasts - especially on sub-seasonal to seasonal time scales, working with established partners to bring results to hundreds of thousands of farmers. We will focus on countries identified as important to our partners, specifically Malawi for our participatory research, plus Nigeria, Senegal, Malawi, Zambia and Ethiopia (amongst others) for our basis risk case studies.In summary, the proposed project will develop a novel operational system (SatWIN-ALERT), which empowers farmers to benefit from robust financial instruments, based on state-of-the-art models, observations and forecasts. Partnership with leading practitioners in Africa will enable SatWIN-ALERT to sit within existing insurance systems to revolutionise basis risk management and build the resilience of millions of farmers to weather-related hazard.
对于依赖雨水灌溉农业的2亿多非洲农民来说,干旱是一个生死攸关的问题。由于无法获得保险等风险管理工具,她们的脆弱性往往更加严重,这也限制了她们在农场承担生产风险的能力。指数保险的赔偿是基于天气或地区产量指标,而不是测量损失,是传统保险的一种负担得起的替代品。然而,指数保险只有在投保的指数公平地反映了农民和保险公司的风险时,才能增加对气候冲击的抵御能力。索引设计过程越来越复杂,使用多种数据源和模型。然而,一定程度的基本风险(赔偿与观察到的损失不匹配)是不可避免的,因为保险并非针对每一种风险。预测气象干旱(降雨不足)和农业干旱(土壤水分不足)之间关系的复杂性所带来的基础风险是农业保险部门面临的一个关键挑战。我们提出了一个新的系统,SatWIN-ALERT,它可以部署在真实的时间检测和预测的基础风险事件,因为它们发生。因此,它可以解锁季节行动(如增加监测),或允许及时进行季节后指数评估或行动,使援助机构和政府能够预测基本风险事件,并采取行动支持面临未补偿农业损失的农民。实际上,预测赔付和损失的工具弥合了事后指数保险和基于预测的金融之间的差距。SatWIN-ALERT提供了一种将现有平台发布的数据结合到干旱综合评估和随后的补偿中的手段。因此,它可以集成到完善和可信的保险设计系统中,例如ARC风险查看器(ARV)或IRI指数保险设计社交网络(SNIID)。SatWIN-ALERT建立在现有的最先进的实践基础上,采用先进的方法进行基础风险管理,使指数保险在气候风险管理和发展中发挥更好的作用。我们还汇集了新的现有参与性和气象研究,以建立适合ODA国家业务使用的系统。为此,我们利用对环境状况监测的基础研究,以及最近在预测方面的改进-特别是在亚季节到季节的时间尺度上,与成熟的合作伙伴合作,为数十万农民带来成果。我们将把重点放在对我们的合作伙伴来说重要的国家,特别是马拉维,我们将进行参与性研究,加上尼日利亚,塞内加尔,马拉维,赞比亚和埃塞俄比亚(以及其他国家),我们将进行基础风险案例研究。总之,拟议的项目将开发一个新的操作系统(SatWIN-ALERT),使农民能够从强大的金融工具中受益,基于最先进的模型,观察和预测。与非洲领先从业者的合作将使SatWIN-ALERT能够在现有的保险系统中进行革命性的基础风险管理,并建立数百万农民对天气相关灾害的复原力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using co-production to improve the appropriate use of sub-seasonal forecasts in Africa
  • DOI:
    10.1016/j.cliser.2021.100246
  • 发表时间:
    2021-09-03
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Hirons, Linda;Thompson, Elisabeth;Woolnough, Steve
  • 通讯作者:
    Woolnough, Steve
Subseasonal Precipitation Prediction for Africa: Forecast Evaluation and Sources of Predictability
非洲次季节降水预测:预测评估和可预测性来源
  • DOI:
    10.1175/waf-d-20-0054.1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    De Andrade F
  • 通讯作者:
    De Andrade F
Evaluation and validation of TAMSAT -ALERT soil moisture and WRSI for use in drought anticipatory action
TAMSAT -ALERT 土壤湿度和 WRSI 用于干旱预测行动的评估和验证
TAMSAT-ALERT v1: A new framework for agricultural decision support
TAMSAT-ALERT v1:农业决策支持的新框架
  • DOI:
    10.5194/gmd-2017-316
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asfaw D
  • 通讯作者:
    Asfaw D
Supplementary material to "TAMSAT-ALERT v1: A new framework for agricultural decision support"
补充材料
  • DOI:
    10.5194/gmd-2017-316-supplement
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asfaw D
  • 通讯作者:
    Asfaw D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Black其他文献

Learner pragmatics at the discourse level: Staying “on topic” in a telecollaborative eTandem task
  • DOI:
    10.1016/j.system.2018.03.019
  • 发表时间:
    2018-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emily Black;Anne Barron
  • 通讯作者:
    Anne Barron
Developing Research-Informed Guidance on Preparing Pharmacy Students to Care for Diverse Populations
  • DOI:
    10.1016/j.ajpe.2023.100383
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kyle J. Wilby;Breanna Laffin;Kathleen Bergin;Vibhuti A. Arya;Emily Black;Afomia Gebre;Heidi Framp
  • 通讯作者:
    Heidi Framp
Reduced-bias estimation of the residual dependence index with unnamed marginals
具有未命名边际的剩余依赖指数的减少偏差估计
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jennifer Israelsson;Emily Black;C. Neves;D. Walshaw
  • 通讯作者:
    D. Walshaw
Model Multiplicity: Opportunities, Concerns, and Solutions
模型多样性:机遇、担忧和解决方案
Using Open Research to mitigate the impact of adverse weather on agriculture in Africa
利用开放研究减轻恶劣天气对非洲农业的影响
  • DOI:
    10.1088/1748-9326/ab94e9
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Ross Maidment;Emily Black
  • 通讯作者:
    Emily Black

Emily Black的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Black', 18)}}的其他基金

International: TAMSAT-AgricuLtural EaRly warning sysTem (TAMSAT-ALERT) platform
国际:TAMSAT-农业预警系统(TAMSAT-ALERT)平台
  • 批准号:
    NE/R009139/1
  • 财政年份:
    2017
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Research Grant
Satellite data for weather index insurance: scaling out (SatWIN-Scale)
用于天气指数保险的卫星数据:扩展 (SatWIN-Scale)
  • 批准号:
    NE/M008797/1
  • 财政年份:
    2014
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Research Grant
Building understanding of climate variability into planning of groundwater supplies from low storage aquifers in Africa (BRAVE)
将对气候变化的理解纳入非洲低蓄水层地下水供应规划中 (BRAVE)
  • 批准号:
    NE/L00187X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
半参数空间自回归面板模型的有效估计与应用研究
  • 批准号:
    71961011
  • 批准年份:
    2019
  • 资助金额:
    16.0 万元
  • 项目类别:
    地区科学基金项目
基于高频信息下高维波动率矩阵估计及应用
  • 批准号:
    71901118
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
  • 批准号:
    11061041
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Development of weather-dependent adaptive data assimilation method for all-sky satellite radiances for the better understanding of chaotic nature of the atmosphere
开发全天卫星辐射的依赖天气的自适应数据同化方法,以更好地了解大气的混沌性质
  • 批准号:
    23K13167
  • 财政年份:
    2023
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Assessment of Methane Emission Source Characteristics from Oil and Gas Operations Using Satellite, Weather, Environmental, and Operational Data
使用卫星、天气、环境和运营数据评估石油和天然气运营的甲烷排放源特征
  • 批准号:
    577118-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Alliance Grants
Real-time Space Weather forecasting using satellite data and machine learning
使用卫星数据和机器学习进行实时空间天气预报
  • 批准号:
    2607345
  • 财政年份:
    2021
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Studentship
SBIR Phase I: Developing a generative framework to assess farmland resilience based on artificial intelligence, satellite data, and stochastic weather modeling
SBIR 第一阶段:开发生成框架,基于人工智能、卫星数据和随机天气模型评估农田恢复力
  • 批准号:
    2026071
  • 财政年份:
    2020
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Standard Grant
Advanced methods for assimilating satellite data in numerical weather prediction
数值天气预报中同化卫星数据的先进方法
  • 批准号:
    2285064
  • 财政年份:
    2019
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Studentship
Improvement of Indonesia weather radar mosaic data and its application for development of satellite rainfall retrievals
印度尼西亚天气雷达镶嵌数据的改进及其在卫星降雨反演开发中的应用
  • 批准号:
    18KK0130
  • 财政年份:
    2018
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Applications of artificial intelligence to satellite data for extreme weather forecasts
人工智能在极端天气预报卫星数据中的应用
  • 批准号:
    1953331
  • 财政年份:
    2017
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Studentship
A toolbox for incorporating satellite-based data into weather index based insurance (SatWin toolbox)
用于将卫星数据纳入基于天气指数的保险的工具箱(SatWin 工具箱)
  • 批准号:
    131541
  • 财政年份:
    2014
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Feasibility Studies
Satellite data for weather index insurance: scaling out (SatWIN-Scale)
用于天气指数保险的卫星数据:扩展 (SatWIN-Scale)
  • 批准号:
    NE/M008797/1
  • 财政年份:
    2014
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Research Grant
Space Weather: Modeling and Forecast of the Geospace Magnetic Field, Based on Satellite Data
空间天气:基于卫星数据的地球空间磁场建模和预测
  • 批准号:
    0296212
  • 财政年份:
    2001
  • 资助金额:
    $ 42.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了