Non-equilibrium thermodynamics in Earth's core -- the agenda for the next decade

地核的非平衡热力学——未来十年的议程

基本信息

  • 批准号:
    NE/T004835/1
  • 负责人:
  • 金额:
    $ 10.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The formation of solids in Earth's liquid core plays a crucial role in the Earth system. At the present day, cooling of the whole planet leads to growth of the solid inner core from Earth's centre by a few millimetres each year. Remarkably, this slow process provides most of the power that sustains motion in the liquid core, which is in turn responsible for producing Earth's magnetic field. The magnetic field emanates from the core and threads through the whole Earth, shielding the surface environment and low-orbiting satellites from potentially harmful solar radiation and enabling continued planetary habitability. Without the power supplied by inner core growth, Earth's magnetic field would probably not still be active today. Before the inner core formed, the process of generating the magnetic field was less efficient. Earth's field is at least 3.5 billion years old and yet the inner core is thought to have formed as early as half a billion years ago. It is currently unclear whether cooling of an entirely liquid core could have provided the power needed to sustain the field for this time period, implying that the fundamental model of Earth's long-term evolution is at best incomplete and possibly incorrect. This has led several recent high-profile studies to propose mechanisms for forming solids prior to inner core formation, though now at the top of the core. Other forms of top-down crystallization have also been advocated for Mercury, Mars, Ganymede and the Moon. In all cases, all current models show that crystallization profoundly alters the long-term thermal and chemical evolution of planetary interiors by producing distinct (and possibly observable) layers, changing the fluid dynamics and influencing the properties of global magnetic fields. Yet, despite decades of study, all current models of the dynamics and evolution of planetary cores ignore the atomic-scale processes that hinder the nucleation and growth of crystals and ultimately determine the systems' approach to equilibrium. Recent work has left no doubt that these non-equilibrium processes are crucial for determining Earth's long-term evolution and the origin of its magnetic field. This work showed that there is actually a substantial energy cost for forming a solid-liquid interface in the core, meaning that the liquid state can persist far below the melting temperature of the system. The size of the energy barrier decreases as the system is supercooled further below the melting temperature, as observed in the atmosphere where supercooled water droplets remain liquid until snow forms around dust particles or ice flash-freezes on aircraft wings. The supercooling required to overcome the energy barrier is so large that current models predict that Earth's inner core should not have formed, pointing to a fundamental problem with our understanding of nucleation in planetary cores. Understanding crystal nucleation and other non-equilibrium processes (e.g. crystal growth) at core conditions faces two main challenges: 1) elucidating the atomic-scale physics at the immense pressure and temperature conditions of Earth's core; 2) a theory for incorporating these results into a model of the macroscopic processes in Earth's core. In this project we will conduct a scoping study that will establish a pathway for using experimental and computational models to answer challenge 1, utilising the unique experimental facilities of project partner Prof. Mike Bergman. We will also produce a research output, a theory of non-equilibrium crystallization that is suitable for application to planetary cores, that will answer challenge 2. Finally, we will hold a workshop at the University of Leeds that will map out the future strategic direction of this important research area.
地球液核中固体的形成在地球系统中起着至关重要的作用。目前,整个地球的冷却导致固体内核每年从地球中心增长几毫米。值得注意的是,这个缓慢的过程提供了维持液核运动的大部分动力,而液核又负责产生地球磁场。磁场从地核发出,穿过整个地球,保护地球表面环境和低轨道卫星免受潜在有害的太阳辐射,使行星能够继续居住。如果没有内核生长提供的能量,地球的磁场可能不会在今天仍然活跃。在内核形成之前,产生磁场的过程效率较低。地球的磁场至少有35亿年的历史,然而内核被认为早在5亿年前就形成了。目前尚不清楚完全液态的地核冷却是否能够提供维持这段时间所需的能量,这意味着地球长期演化的基本模型充其量是不完整的,甚至可能是不正确的。这使得最近几项备受瞩目的研究提出了在内核形成之前形成固体的机制,尽管现在是在内核的顶部。其他形式的自上而下的结晶也被提倡用于水星,火星,木卫三和月球。在所有情况下,所有现有的模型都表明,结晶通过产生不同的(可能可观察到的)层,改变流体动力学并影响全球磁场的性质,深刻地改变了行星内部的长期热和化学演化。然而,尽管经过了数十年的研究,目前所有关于行星核心动力学和演化的模型都忽略了原子尺度的过程,这些过程阻碍了晶体的成核和生长,并最终决定了系统接近平衡的方式。最近的研究表明,这些非平衡过程对于确定地球的长期演化及其磁场的起源至关重要。这项工作表明,在核心中形成固液界面实际上需要大量的能量成本,这意味着液态可以在远低于系统熔化温度的情况下持续存在。当系统进一步过冷到低于熔化温度时,能垒的大小会减小,正如在大气中观察到的那样,过冷水滴保持液态,直到尘埃颗粒周围形成雪或机翼上的冰瞬间冻结。克服能量障碍所需的过冷是如此之大,以至于目前的模型预测地球的内核不应该形成,这指出了我们对行星核心成核的理解的一个根本问题。理解地核条件下的晶体成核和其他非平衡过程(例如晶体生长)面临两个主要挑战:1)阐明地核巨大压力和温度条件下的原子尺度物理学; 2)将这些结果纳入地核宏观过程模型的理论。在这个项目中,我们将进行范围研究,将建立一个使用实验和计算模型来回答挑战1的途径,利用项目合作伙伴Mike Bergman教授独特的实验设施。我们还将产生一个研究成果,一个适用于行星核心的非平衡结晶理论,这将回答挑战2。最后,我们将在利兹大学举办一个研讨会,制定这一重要研究领域的未来战略方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Davies其他文献

Control of stationary convective instabilities in the rotating disk boundary layer via time-periodic modulation
通过时间周期调制控制旋转盘边界层的稳态对流不稳定性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Scott Morgan;Christopher Davies;Christian Thomas
  • 通讯作者:
    Christian Thomas
Global stability behaviour for the BEK family of rotating boundary layers
Complete loss of emTP53/em and emRB1/em is associated with complex genome and low immune infiltrate in pleomorphic rhabdomyosarcoma
在多形性横纹肌肉瘤中,emTP53/em 和 emRB1/em 的完全缺失与复杂基因组和低免疫浸润相关
  • DOI:
    10.1016/j.xhgg.2023.100224
  • 发表时间:
    2023-10-12
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Hannah C. Beird;Chia-Chin Wu;Michael Nakazawa;Davis Ingram;Joseph R. Daniele;Rossana Lazcano;Latasha Little;Christopher Davies;Najat C. Daw;Khalida Wani;Wei-Lien Wang;Xingzhi Song;Curtis Gumbs;Jianhua Zhang;Brian Rubin;Anthony Conley;Adrienne M. Flanagan;Alexander J. Lazar;P. Andrew Futreal
  • 通讯作者:
    P. Andrew Futreal
On the impulse response and global instability development of the infinite rotating-disc boundary layer
无限转盘边界层的脉冲响应和全局不稳定性发展
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Christian Thomas;Christopher Davies
  • 通讯作者:
    Christopher Davies
Subclassification of epithelioid sarcoma with potential therapeutic impact
具有潜在治疗影响的上皮样肉瘤的亚分类
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    S. Haefliger;O. Chervova;Christopher Davies;S. Nottley;S. Hargreaves;V. Sumathi;F. Amary;R. Tirabosco;N. Pillay;Stephan Beck;A. Flanagan;Iben Lyskjaer
  • 通讯作者:
    Iben Lyskjaer

Christopher Davies的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Davies', 18)}}的其他基金

NSFGEO-NERC: Deciphering the Dynamics of Geomagnetic Excursions
NSFGEO-NERC:破译地磁偏移的动力学
  • 批准号:
    NE/Y003500/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Research Grant
Earth's Core as a Layered System
地核作为一个分层系统
  • 批准号:
    NE/V010867/1
  • 财政年份:
    2021
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Research Grant
NSFGEO-NERC:Integrated Experimental and Dynamical Modeling of Top-down Crystallization in Terrestrial Cores:Implications for Core Cooling in the Earth
NSFGEO-NERC:陆地核心自上而下结晶的综合实验和动力学模型:对地球核心冷却的影响
  • 批准号:
    NE/T003855/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Research Grant
Resolving the Inner Core Nucleation Paradox
解决内核成核悖论
  • 批准号:
    NE/T000228/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Research Grant
NSFGEO-NERC: On the origin of extreme variations in Earth's magnetic field
NSFGEO-NERC:地球磁场极端变化的起源
  • 批准号:
    NE/V009052/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Research Grant
A New Energy Budget for Earth's Core and Implications for the Geomagnetic Field
地核的新能源预算及其对地磁场的影响
  • 批准号:
    NE/L011328/1
  • 财政年份:
    2015
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Fellowship
A Multidisciplinary Study of Thermal Core-Mantle Coupling in Geodynamo Models
地球发电机模型中热核幔耦合的多学科研究
  • 批准号:
    NE/H01571X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Fellowship
Numerical simulation of transitional boundary-layer flows
过渡边界层流的数值模拟
  • 批准号:
    EP/D034426/1
  • 财政年份:
    2006
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Research Grant

相似国自然基金

最优证券设计及完善中国资本市场的路径选择
  • 批准号:
    70873012
  • 批准年份:
    2008
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Energy Conversion Beyond the First Law of Thermodynamics in Non-Equilibrium Plasmas
合作研究:非平衡等离子体中超越热力学第一定律的能量转换
  • 批准号:
    2308669
  • 财政年份:
    2023
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Standard Grant
Theoretical elucidation of optimal structure for PEMFC catalyst layer based on non-equilibrium thermodynamics
基于非平衡热力学的质子交换膜燃料电池催化剂层优化结构的理论阐释
  • 批准号:
    22KJ2198
  • 财政年份:
    2023
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Energy Conversion Beyond the First Law of Thermodynamics in Non-Equilibrium Plasmas
合作研究:非平衡等离子体中超越热力学第一定律的能量转换
  • 批准号:
    2308670
  • 财政年份:
    2023
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Standard Grant
Theory and Applications of Non-Equilibrium Thermodynamics
非平衡热力学理论与应用
  • 批准号:
    RGPIN-2022-03188
  • 财政年份:
    2022
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Discovery Grants Program - Individual
EPSRC-SFI: Non-Equilibrium Steady-States of Quantum many-body systems: uncovering universality and thermodynamics (QuamNESS)
EPSRC-SFI:量子多体系统的非平衡稳态:揭示普遍性和热力学 (QuamNESS)
  • 批准号:
    EP/T028106/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Research Grant
EPSRC-SFI: Non-Equilibrium Steady-States of Quantum many-body systems: uncovering universality and thermodynamics (QuamNESS)
EPSRC-SFI:量子多体系统的非平衡稳态:揭示普遍性和热力学 (QuamNESS)
  • 批准号:
    EP/T028424/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Research Grant
Development of non-equilibrium thermodynamics simulator applicable to life and social phenomena produced by dissipative structure
开发适用于耗散结构产生的生活和社会现象的非平衡热力学模拟器
  • 批准号:
    19K04896
  • 财政年份:
    2019
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unveiling non-equilibrium thermodynamics via statistical estimation theory
通过统计估计理论揭示非平衡热力学
  • 批准号:
    19K12153
  • 财政年份:
    2019
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Thermodynamics and non-equilibrium dynamics of open quantum systems
开放量子系统的热力学和非平衡动力学
  • 批准号:
    2297511
  • 财政年份:
    2019
  • 资助金额:
    $ 10.08万
  • 项目类别:
    Studentship
Mathematical Modeling of a Self-Assembled Probe for Non Intercalator Type Real-Time Monitoring of PCR
用于非嵌入剂型 PCR 实时监测的自组装探针的数学建模
  • 批准号:
    9813297
  • 财政年份:
    2019
  • 资助金额:
    $ 10.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了