Resolving the Inner Core Nucleation Paradox
解决内核成核悖论
基本信息
- 批准号:NE/T000228/1
- 负责人:
- 金额:$ 80.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The solid inner core, a ball of iron and nickel over 5000 km below the surface, is the most remote region of our planet and yet plays a crucial role in the Earth system. As the whole planet cools, the inner core grows outwards from Earth's centre by a few millimetres each year. Remarkably, this slow process is the dominant power source that sustains fluid motion in the outer core, which is responsible for generating Earth's magnetic field. The magnetic field emanates from the core and threads through the whole Earth, shielding the surface environment and low-orbiting satellites from potentially harmful solar radiation and enabling continued planetary habitability. Without the power supplied by inner core growth, Earth's magnetic field would probably not still be active today. The very presence of the inner core fundamentally changes the dynamics of fluid flow in the liquid core, altering the field we observe at Earth's surface in a complex manner that is still debated, and may influence the processes and characteristics of magnetic polarity reversals and excursions. Growth of the inner core also affects the structure and evolution of enigmatic regions at the top and bottom of the outer core observed by seismology, which are important because they apparently do not help to generate magnetic field. However, despite decades of study, recent work has uncovered a significant gap in our understanding of how the inner core formed. Astonishingly, the change is so significant that our most advanced models of Earth's evolution imply that the inner core should not have formed. Given that Earth has a solid inner core, this leads to a significant gap in our understanding of the evolution of our planet.The inner core nucleation paradox arises from the way that a liquid transforms to a solid as it cools through its melting temperature. Below the melting temperature the energy of the solid is lower than the energy of the same amount of liquid. Although this means formation of the solid from the liquid would be favoured, in the absence of external surfaces (so-called homogeneous nucleation) some energy is required to form a solid-liquid interface; until this energy barrier is overcome the liquid state can persist even below the melting point. The size of the barrier decreases as the system is supercooled further below the melting temperature. We observe this effect in the atmosphere where supercooled water droplets persist in the liquid state until snow forms around dust particles or ice flash-freezes on aircraft wings. These examples also illustrate the importance of heterogeneous nucleation, where a pre-existing solid (e.g. an aircraft wing) reduces the energy barrier and allows rapid freezing. Supercooling is the missing ingredient from current models of inner core formation. Recent work, including our own pilot study using atomic-scale simulations, suggests that the amount of supercooling required for homogeneous nucleation of iron under core conditions is very large: 700-1000 K is needed for the inner core to nucleate on the billion-year timescale available. This is too large to be compatible with current theories of inner core growth. We thus cannot explain the presence of a solid inner core at the centre of the Earth, even though we know it exists. This is the inner core nucleation paradox. In this proposal we will resolve the inner core nucleation paradox by a multidisciplinary approach that combines simulation of nucleation at the atomic scale with models of Earth's evolution spanning the last 4.5 billion years. We will determine whether the inner core nucleated homogeneously or heterogeneously and place robust bounds on the inner core age. These results will be incorporated into a new generation of core evolution models that will provide a coherent picture of deep Earth evolution and form the framework for interpreting fundamental magnetic and seismic observations of Earth's deep interior.
固体内核,一个铁和镍的球,位于地表以下5000公里,是我们星球上最偏远的地区,但在地球系统中起着至关重要的作用。随着整个地球的冷却,内核每年从地球中心向外生长几毫米。值得注意的是,这个缓慢的过程是维持外核流体运动的主要动力来源,而外核则负责产生地球磁场。磁场从地核发出,穿过整个地球,保护地表环境和低轨道卫星免受潜在有害的太阳辐射,并使行星能够继续居住。如果没有内核生长提供的能量,地球的磁场可能不会在今天仍然活跃。内核的存在从根本上改变了液核中流体流动的动力学,以一种复杂的方式改变了我们在地球表面观察到的磁场,这种方式仍然存在争议,并可能影响磁极反转和偏移的过程和特征。内核的增长也影响了地震学观察到的外核顶部和底部的神秘区域的结构和演化,这很重要,因为它们显然无助于产生磁场。然而,尽管经过了几十年的研究,最近的研究发现,我们对内核如何形成的理解存在重大差距。令人惊讶的是,这种变化是如此重要,以至于我们最先进的地球演化模型暗示,内核不应该形成。考虑到地球有一个固体内核,这导致我们对地球演化的理解存在重大差距。内核成核悖论源于液体在通过熔化温度冷却时转变为固体的方式。在熔化温度以下,固体的能量低于等量液体的能量。虽然这意味着从液体形成固体将是有利的,但在没有外表面的情况下(所谓的均匀成核),需要一些能量来形成固-液界面;直到克服这个能量障碍,液态甚至可以在熔点以下持续存在。势垒的大小随着系统进一步过冷到熔化温度以下而减小。我们在大气层中观察到这种效应,其中过冷水滴持续处于液态,直到灰尘颗粒周围形成雪或机翼上的冰瞬间冻结。这些例子还说明了异质成核的重要性,其中预先存在的固体(例如飞机机翼)降低了能量势垒并允许快速冷冻。过冷是当前内核形成模型中缺少的成分。最近的工作,包括我们自己使用原子尺度模拟的试点研究,表明在核心条件下铁的均匀成核所需的过冷量非常大:在可用的十亿年时间尺度上,内核成核需要700 - 1000 K。这一数字太大,与当前的内核增长理论不相容。因此,我们无法解释在地球中心存在一个固体内核,即使我们知道它的存在。这就是内核成核悖论。在这项提案中,我们将解决内核成核悖论的多学科方法相结合的模拟成核在原子尺度上跨越过去45亿年的地球演化模型。我们将确定是否内核成核均匀或不均匀,并放置内核心年龄的强大的界限。这些结果将被纳入新一代的地核演化模型,该模型将提供一幅关于地球深部演化的连贯画面,并构成解释地球深部内部基本磁力和地震观测的框架。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Can homogeneous nucleation resolve the inner core nucleation paradox?
- DOI:10.1016/j.epsl.2023.118176
- 发表时间:2023-07
- 期刊:
- 影响因子:5.3
- 作者:Alfred J. Wilson;D. Alfé;A. Walker;C. Davies
- 通讯作者:Alfred J. Wilson;D. Alfé;A. Walker;C. Davies
Probing the nucleation of iron in Earth's core using molecular dynamics simulations of supercooled liquids
- DOI:10.1103/physrevb.103.214113
- 发表时间:2021-06
- 期刊:
- 影响因子:3.7
- 作者:Alfred J. Wilson;A. Walker;D. Alfé;C. Davies
- 通讯作者:Alfred J. Wilson;A. Walker;D. Alfé;C. Davies
Towards reconciling experimental and computational determinations of Earth's core thermal conductivity
- DOI:10.1016/j.epsl.2022.117466
- 发表时间:2022-04
- 期刊:
- 影响因子:5.3
- 作者:M. Pozzo;C. Davies;D. Alfé
- 通讯作者:M. Pozzo;C. Davies;D. Alfé
Examining the power supplied to Earth's dynamo by magnesium precipitation and radiogenic heat production
- DOI:10.1016/j.pepi.2023.107073
- 发表时间:2023-07
- 期刊:
- 影响因子:2.3
- 作者:Alfred J. Wilson;M. Pozzo;C. Davies;A. Walker;D. Alfé
- 通讯作者:Alfred J. Wilson;M. Pozzo;C. Davies;A. Walker;D. Alfé
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Davies其他文献
Control of stationary convective instabilities in the rotating disk boundary layer via time-periodic modulation
通过时间周期调制控制旋转盘边界层的稳态对流不稳定性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.7
- 作者:
Scott Morgan;Christopher Davies;Christian Thomas - 通讯作者:
Christian Thomas
Complete loss of emTP53/em and emRB1/em is associated with complex genome and low immune infiltrate in pleomorphic rhabdomyosarcoma
在多形性横纹肌肉瘤中,emTP53/em 和 emRB1/em 的完全缺失与复杂基因组和低免疫浸润相关
- DOI:
10.1016/j.xhgg.2023.100224 - 发表时间:
2023-10-12 - 期刊:
- 影响因子:3.600
- 作者:
Hannah C. Beird;Chia-Chin Wu;Michael Nakazawa;Davis Ingram;Joseph R. Daniele;Rossana Lazcano;Latasha Little;Christopher Davies;Najat C. Daw;Khalida Wani;Wei-Lien Wang;Xingzhi Song;Curtis Gumbs;Jianhua Zhang;Brian Rubin;Anthony Conley;Adrienne M. Flanagan;Alexander J. Lazar;P. Andrew Futreal - 通讯作者:
P. Andrew Futreal
Global stability behaviour for the BEK family of rotating boundary layers
- DOI:
10.1007/s00162-016-0406-9 - 发表时间:
2016-09-02 - 期刊:
- 影响因子:2.800
- 作者:
Christopher Davies;Christian Thomas - 通讯作者:
Christian Thomas
On the impulse response and global instability development of the infinite rotating-disc boundary layer
无限转盘边界层的脉冲响应和全局不稳定性发展
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.7
- 作者:
Christian Thomas;Christopher Davies - 通讯作者:
Christopher Davies
Subclassification of epithelioid sarcoma with potential therapeutic impact
具有潜在治疗影响的上皮样肉瘤的亚分类
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:7.3
- 作者:
S. Haefliger;O. Chervova;Christopher Davies;S. Nottley;S. Hargreaves;V. Sumathi;F. Amary;R. Tirabosco;N. Pillay;Stephan Beck;A. Flanagan;Iben Lyskjaer - 通讯作者:
Iben Lyskjaer
Christopher Davies的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Davies', 18)}}的其他基金
NSFGEO-NERC: Deciphering the Dynamics of Geomagnetic Excursions
NSFGEO-NERC:破译地磁偏移的动力学
- 批准号:
NE/Y003500/1 - 财政年份:2023
- 资助金额:
$ 80.31万 - 项目类别:
Research Grant
Earth's Core as a Layered System
地核作为一个分层系统
- 批准号:
NE/V010867/1 - 财政年份:2021
- 资助金额:
$ 80.31万 - 项目类别:
Research Grant
NSFGEO-NERC:Integrated Experimental and Dynamical Modeling of Top-down Crystallization in Terrestrial Cores:Implications for Core Cooling in the Earth
NSFGEO-NERC:陆地核心自上而下结晶的综合实验和动力学模型:对地球核心冷却的影响
- 批准号:
NE/T003855/1 - 财政年份:2020
- 资助金额:
$ 80.31万 - 项目类别:
Research Grant
NSFGEO-NERC: On the origin of extreme variations in Earth's magnetic field
NSFGEO-NERC:地球磁场极端变化的起源
- 批准号:
NE/V009052/1 - 财政年份:2020
- 资助金额:
$ 80.31万 - 项目类别:
Research Grant
Non-equilibrium thermodynamics in Earth's core -- the agenda for the next decade
地核的非平衡热力学——未来十年的议程
- 批准号:
NE/T004835/1 - 财政年份:2019
- 资助金额:
$ 80.31万 - 项目类别:
Research Grant
A New Energy Budget for Earth's Core and Implications for the Geomagnetic Field
地核的新能源预算及其对地磁场的影响
- 批准号:
NE/L011328/1 - 财政年份:2015
- 资助金额:
$ 80.31万 - 项目类别:
Fellowship
A Multidisciplinary Study of Thermal Core-Mantle Coupling in Geodynamo Models
地球发电机模型中热核幔耦合的多学科研究
- 批准号:
NE/H01571X/1 - 财政年份:2011
- 资助金额:
$ 80.31万 - 项目类别:
Fellowship
Numerical simulation of transitional boundary-layer flows
过渡边界层流的数值模拟
- 批准号:
EP/D034426/1 - 财政年份:2006
- 资助金额:
$ 80.31万 - 项目类别:
Research Grant
相似海外基金
Palaeomagnetic field behaviour in the Palaeozoic and the hunt for inner core birth
古生代的古磁场行为与寻找内核诞生
- 批准号:
NE/X014142/1 - 财政年份:2023
- 资助金额:
$ 80.31万 - 项目类别:
Research Grant
Impact of inner core composition to and hard protein corona formed on polymeric micelles
内核成分对聚合物胶束上形成的硬蛋白冠的影响
- 批准号:
23K14423 - 财政年份:2023
- 资助金额:
$ 80.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Chemical composition of the Earth's inner core from first-principles calculations and machine learning
通过第一性原理计算和机器学习了解地球内核的化学成分
- 批准号:
22K03754 - 财政年份:2022
- 资助金额:
$ 80.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new Journey to the Earth's Inner Core: a Planet Within a Planet
地球内核新之旅:行星中的行星
- 批准号:
DP220102815 - 财政年份:2022
- 资助金额:
$ 80.31万 - 项目类别:
Discovery Projects
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
- 批准号:
2054964 - 财政年份:2021
- 资助金额:
$ 80.31万 - 项目类别:
Continuing Grant
Origin of inner core hemispherical dichotomy : laboratory modeling using transmitted and reflected waves
内核半球二分法的起源:使用透射波和反射波的实验室建模
- 批准号:
21K03717 - 财政年份:2021
- 资助金额:
$ 80.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure and motion of the inner core from dense arrays
密集阵列的内核结构和运动
- 批准号:
2041892 - 财政年份:2021
- 资助金额:
$ 80.31万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
- 批准号:
2054993 - 财政年份:2021
- 资助金额:
$ 80.31万 - 项目类别:
Standard Grant
Reconstruction of geomagnetic field and its influence on history of the Earth and life using magnetic microscopy around the formation of inner core
利用磁显微镜重建地磁场及其对地球历史和生命的影响围绕内核的形成
- 批准号:
21H04523 - 财政年份:2021
- 资助金额:
$ 80.31万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Latent-heat based measurements of the melting curve of iron to the pressure of Earth’s inner core boundary
基于潜热的铁熔化曲线与地球内核边界压力的测量
- 批准号:
2125954 - 财政年份:2021
- 资助金额:
$ 80.31万 - 项目类别:
Standard Grant