Efficient Bayesian modelling of infectious diseases in wildlife
野生动物传染病的高效贝叶斯建模
基本信息
- 批准号:NE/V000616/1
- 负责人:
- 金额:$ 40.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Infectious diseases of wildlife result in significant welfare and conservation costs to wild animal populations. For example, chytridiomycosis is a fungal pathogen driving the mass extinction of numerous amphibian species worldwide, putting at risk >10% of all vertebrate species; while white-nose syndrome is estimated to have caused >6 million bat deaths in North America by 2012 alone. Diseases in wildlife can also have significant impacts on agriculture. For example, bovine tuberculosis (bTB) is a notifiable disease in livestock, which costs the UK government over £100 million per year in terms of testing and compensation for slaughtered animals, and also has huge impacts on the livelihoods of farmers. The pathogen has a wide host range, which includes protected species such as badgers, and currently, bTB is the subject of highly controversial badger culling trials aimed at attenuating disease transmission to livestock. Wildlife infectious diseases also represent a considerable threat to humans, as emerging zoonoses such as Ebola, Zika, West Nile virus, HIV and plague all attest to. In short, the list of WID outbreaks is long and growing, and we desperately need better tools to study their epidemiology.Mathematical modelling provides tools that enable us to better understand infectious disease dynamics, and can thus be used to help inform management strategies. However, the use of mathematical models without robustly fitting to observed data can lead to poor model predictions and inference, in turn hindering scientific enquiry and increasing the probability of making poor policy decisions. Fitting dynamic transmission models to observed data is highly challenging, since available data is incomplete, and thus standard statistical approaches that rely on estimation of the likelihood function cannot be employed.We will extend recent advances in simulation-based Bayesian inference methods, which have shown great utility in overcoming these difficulties. These approaches are flexible and tractable, but can be computationally demanding. This project will extend recent advances in the field to deal with key challenges, both in the scaling up of these methods to larger systems, and also in dealing with the complexities that typify wildlife disease systems, such as: incomplete longitudinal sampling of individuals (i.e. capture-mark-recapture), the application of multiple diagnostic tests, uncertainties in diagnostic test performance, complex spatial and meta-population structures, and demographic changes over time. We will explore the development of constrained simulation techniques, which have been shown to greatly improve the efficiency of these inference algorithms in small populations, and hence are good candidates for improving efficiency in larger, more complex populations. We will also explore the use of these algorithms to allow for the fitting and comparison of different transmission models, again extending recent work in the field. We will ground our research using the high-profile case study of bovine tuberculosis in badgers, which suffers from all of the system-uncertainty and data-quality issues described above. Additionally, the disease has a direct impact on the livelihoods of UK farmers, major policy decisions that influence voter behaviour, and the conservation and management of UK wildlife. We will use an unprecedented 40+ year longitudinal study of bTB in a natural, wild population of badgers, to provide a unique and powerful insight into the aetiology of the disease. Although we focus on wildlife disease systems in this project, the methodological advances developed will be applicable to a wider range of state-space systems.
野生动物的传染病给野生动物种群带来了巨大的福利和保护成本。例如,壶菌病是一种真菌病原体,导致全球许多两栖动物物种的大规模灭绝,使> 10%的所有脊椎动物物种处于危险之中;而据估计,仅到2012年,白鼻综合征就在北美造成了> 600万蝙蝠死亡。野生动物疾病也会对农业产生重大影响。例如,牛结核病(bTB)是牲畜中的一种应报告疾病,英国政府每年在屠宰动物的检测和赔偿方面花费超过1亿英镑,并且对农民的生计产生巨大影响。该病原体具有广泛的宿主范围,其中包括受保护的物种,如獾,目前,bTB是极具争议的獾扑杀试验的主题,旨在减少疾病对牲畜的传播。野生动物传染病也对人类构成相当大的威胁,埃博拉病毒、寨卡病毒、西尼罗河病毒、艾滋病毒和鼠疫等新出现的人畜共患疾病都证明了这一点。总之,妇女传染病爆发的名单很长,而且还在不断增加,我们迫切需要更好的工具来研究其流行病学。数学建模提供了使我们能够更好地了解传染病动态的工具,因此可以用来帮助制定管理战略。然而,使用数学模型而不与观测数据进行稳健拟合可能会导致模型预测和推理不佳,从而阻碍科学调查并增加做出错误决策的可能性。拟合动态传输模型的观测数据是非常具有挑战性的,因为现有的数据是不完整的,因此标准的统计方法,依赖于估计的似然functions.We不能扩展最近的进展,基于模拟的贝叶斯推理方法,这已经显示出很大的效用,在克服这些困难。这些方法是灵活和易于处理的,但可能需要计算。该项目将扩展该领域的最新进展,以应对关键挑战,包括将这些方法扩大到更大的系统,以及处理典型的野生动物疾病系统的复杂性,例如:个体不完全纵向抽样(即捕获-标记-再捕获)、多种诊断测试的应用、诊断测试性能的不确定性、复杂的空间和元群体结构,以及人口结构随时间的变化。我们将探讨约束模拟技术的发展,这些技术已被证明可以大大提高这些推理算法在小种群中的效率,因此是提高更大,更复杂种群效率的良好候选者。我们还将探索使用这些算法来拟合和比较不同的传输模型,再次扩展该领域的最新工作。我们将使用獾中牛结核病的高调案例研究来进行研究,该案例受到上述所有系统不确定性和数据质量问题的影响。此外,这种疾病对英国农民的生计、影响选民行为的重大政策决定以及英国野生动物的保护和管理都有直接影响。我们将在自然的野生獾种群中进行前所未有的40多年的bTB纵向研究,以提供对该疾病病因学的独特而强大的见解。虽然我们专注于野生动物疾病系统在这个项目中,开发的方法的进步将适用于更广泛的状态空间系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trevelyan McKinley其他文献
Trevelyan McKinley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
- 批准号:82173628
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
- 批准号:42072326
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
- 批准号:51875209
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
- 批准号:U1830105
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
- 批准号:41601345
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
- 批准号:81673274
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
- 批准号:81403276
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
- 批准号:71302080
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
- 批准号:51274089
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Bayesian实物期权及在信用风险决策中的应用
- 批准号:71071027
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Delivering training courses for environmental scientists - Bayesian methods for ecological and environmental modelling
为环境科学家提供培训课程——生态和环境建模的贝叶斯方法
- 批准号:
NE/Y003780/1 - 财政年份:2023
- 资助金额:
$ 40.93万 - 项目类别:
Training Grant
Three-dimensional Bayesian Modelling of Geological and Geophysical data
地质和地球物理数据的三维贝叶斯建模
- 批准号:
LP210301239 - 财政年份:2023
- 资助金额:
$ 40.93万 - 项目类别:
Linkage Projects
Foreground Modelling using Bayesian Techniques for 21cm Cosmology
使用贝叶斯技术进行 21cm 宇宙学前景建模
- 批准号:
2742720 - 财政年份:2022
- 资助金额:
$ 40.93万 - 项目类别:
Studentship
An adaptive individualization of Hierarchical sleep modelling using Bayesian deep learning
使用贝叶斯深度学习的分层睡眠模型的自适应个体化
- 批准号:
22K12276 - 财政年份:2022
- 资助金额:
$ 40.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
- 批准号:
2764855 - 财政年份:2022
- 资助金额:
$ 40.93万 - 项目类别:
Studentship
Development of a Bayesian modelling framework to study the effects of hydrological extremes under present and future climate conditions
开发贝叶斯建模框架来研究当前和未来气候条件下极端水文的影响
- 批准号:
559361-2021 - 财政年份:2022
- 资助金额:
$ 40.93万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
COVID-19: Bayesian inference for high resolution stochastic modelling for the UK
COVID-19:英国高分辨率随机建模的贝叶斯推理
- 批准号:
EP/W011840/1 - 财政年份:2021
- 资助金额:
$ 40.93万 - 项目类别:
Research Grant
High-resolution semi-parametric Bayesian modelling of human contact dynamics.
人类接触动力学的高分辨率半参数贝叶斯建模。
- 批准号:
2602755 - 财政年份:2021
- 资助金额:
$ 40.93万 - 项目类别:
Studentship
A modelling of the neuro-energetics of Bayesian learning.
贝叶斯学习的神经能量学建模。
- 批准号:
2482786 - 财政年份:2021
- 资助金额:
$ 40.93万 - 项目类别:
Studentship
Development of a Bayesian modelling framework to study the effects of hydrological extremes under present and future climate conditions
开发贝叶斯建模框架来研究当前和未来气候条件下极端水文的影响
- 批准号:
559361-2021 - 财政年份:2021
- 资助金额:
$ 40.93万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral