LiFT - Lithium for Future Technology
LiFT - 未来技术的锂
基本信息
- 批准号:NE/V006940/1
- 负责人:
- 金额:$ 36.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Along with many other countries worldwide, the UK is committed to achieving a low carbon economy. There is a plan to achieve net zero carbon dioxide emissions by 2050, with a key component of this plan being a ban on the sale of new petrol and diesel cars by 2035, and a switch to electric vehicles. These vehicles will require storage batteries that contain many components made of metals that have limited supplies. For example, a recent open letter authored by Professor Richard Herrington (principal investigator for the NHM on this proposal) explained that if the UK is to meet its electric car targets, it will require three quarters of the world's current total annual production of lithium - an essential component of modern electric vehicle batteries. Whilst current rates of lithium production are sufficient to meet global demand, we need to investigate additional lithium resources if we are to meet greenhouse gas emission targets. This proposal seeks to better understand the Earth system processes that concentrate lithium into mineral deposits, from which lithium can be mined in both an economically feasible and an environmentally responsible manner. Our central hypothesis is that major lithium deposits are largely formed in parts of the world where continental collision occurs as a consequence of plate tectonics.We will further test the hypothesis that within these collisional environments there is a "life-cycle" of tectonic processes that is reflected in the formation of different types of lithium deposits. Broadly speaking, in the first stage lithium is moderately concentrated in igneous rocks that are formed in this setting. Lithium is a relatively soluble element, which is readily leached and weathered from these rocks (particularly by hot geothermal water) and the lithium-rich waters may accumulate in basins that are also formed during continental collision. If the climate is arid, the waters evaporate to form a lithium-rich brine that can be an economically viable lithium deposit in its own right. In these brine basins, complex chemical processes and extreme microbial life may play a role in cycling elements and concentrating the lithium into sediments. Over time, the geothermal and volcanic activity ceases and the lithium-rich sediments may be buried and thus preserved for millions of years. Subsequently, these buried rocks may also serve as a source of lithium that can be extracted. With further burial and then heating, these lithium-rich sediments can reach temperatures at which they undergo melting and the formation of lithium-enriched pegmatites and granites. Again, these rocks may contain sufficient concentrations and amounts of lithium to represent a source of lithium that can be extracted for ultimate incorporation in electric vehicle batteries.At each stage of the life-cycle there are uncertainties regarding the source of lithium, and how it is transported and trapped. The different types of lithium deposits also vary in how easy it is to extract the lithium, and we need to consider how to do this in an environmentally responsible way. We will tackle these problems by bringing together a group of scientists who have considerable expertise in all aspects of this lithium journey. We will use a wide range of techniques, from simple geological observations through to highly sophisticated isotopic analyses and microbiological techniques, to track the behaviour of lithium. We will work alongside industry partners to identify the types of deposits that can be profitably extracted while simultaneously minimising any damage to the environment, and we will investigate the potential for more sustainable methods of lithium extraction using microbial processes. We anticipate that our research will provide industry with new targets for exploration for lithium resources. This will not only help secure a low carbon economy for the UK, but also provide important economic benefits to the UK and other nations.
沿着世界上许多其他国家,英国致力于实现低碳经济。有一项到2050年实现二氧化碳净零排放的计划,该计划的一个关键组成部分是到2035年禁止销售新的汽油和柴油汽车,并转向电动汽车。这些车辆将需要蓄电池,其中包含许多由供应有限的金属制成的组件。例如,NHM首席研究员Richard Herrington教授最近撰写的一封公开信解释说,如果英国要实现其电动汽车目标,它将需要目前全球锂年产量的四分之三-现代电动汽车电池的重要组成部分。虽然目前的锂生产率足以满足全球需求,但如果我们要达到温室气体排放目标,我们需要研究更多的锂资源。该提案旨在更好地了解地球系统将锂浓缩成矿床的过程,从而可以以经济可行和对环境负责的方式开采锂。我们的中心假设是,主要的锂矿床主要是在世界上的部分地区形成的大陆碰撞作为板块构造的结果。我们将进一步测试的假设,在这些碰撞环境中,有一个“生命周期”的构造过程,反映在不同类型的锂矿床的形成。一般来说,在第一阶段,锂适度地集中在这种环境下形成的火成岩中。锂是一种相对可溶的元素,它很容易从这些岩石中浸出和风化(特别是通过热地热水),富含锂的沃茨可能积聚在大陆碰撞期间形成的盆地中。如果气候干旱,沃茨蒸发形成富含锂的卤水,其本身就可以成为经济上可行的锂存款。在这些盐水盆地中,复杂的化学过程和极端的微生物生命可能在元素循环和锂浓缩到沉积物中发挥作用。随着时间的推移,地热和火山活动停止,富含锂的沉积物可能会被掩埋,从而保存数百万年。随后,这些埋藏的岩石也可以作为可以提取的锂的来源。随着进一步的埋藏和加热,这些富含锂的沉积物可以达到熔融和形成富含锂的伟晶岩和花岗岩的温度。同样,这些岩石可能含有足够浓度和数量的锂,代表锂的来源,可以提取用于最终纳入电动汽车电池。在生命周期的每个阶段,锂的来源以及如何运输和捕获都存在不确定性。不同类型的锂矿床提取锂的容易程度也有所不同,我们需要考虑如何以对环境负责的方式做到这一点。我们将召集一群在锂之旅的各个方面拥有丰富专业知识的科学家来解决这些问题。我们将使用广泛的技术,从简单的地质观察到高度复杂的同位素分析和微生物学技术,来跟踪锂的行为。我们将与行业合作伙伴合作,确定可盈利开采的矿床类型,同时最大限度地减少对环境的任何损害,我们将研究使用微生物工艺的更可持续的锂提取方法的潜力。我们预计,我们的研究将为锂资源勘探提供新的目标。这不仅有助于确保英国的低碳经济,还将为英国和其他国家提供重要的经济利益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryne Ngwenya其他文献
You Can’t Climb a Broken Ladder: Examining Underrepresentation of Multiply-Disadvantaged Groups in Secure and Senior Roles in UK Geochemistry
你无法爬上破损的梯子:检查英国地球化学中安全和高级角色中多重弱势群体的代表性不足
- DOI:
10.3389/esss.2024.10098 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
P. Anand;Pieter Bots;Jessica Gagnon;Francis Appiah;Elena Maters;Shonil Bhagwat;Susan Little;Amy Riches;Ernest ChiFru;Anya Lawrence;Bryne Ngwenya - 通讯作者:
Bryne Ngwenya
Bryne Ngwenya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryne Ngwenya', 18)}}的其他基金
Understanding genesis of HREE deposits through Experimental and Spectroscopic measurements and atomistic Simulations (REEXSS).
通过实验和光谱测量以及原子模拟 (REEXSS) 了解重稀土矿床的成因。
- 批准号:
NE/L002299/1 - 财政年份:2013
- 资助金额:
$ 36.22万 - 项目类别:
Research Grant
相似海外基金
High-energy lithium-air batteries, a breathable future for renewable energy
高能锂空气电池,可再生能源的呼吸未来
- 批准号:
DE240100868 - 财政年份:2024
- 资助金额:
$ 36.22万 - 项目类别:
Discovery Early Career Researcher Award
Designing New Production Processes for Lithium-Ion Batteries for a Sustainable Future
设计新的锂离子电池生产工艺,实现可持续发展的未来
- 批准号:
2805419 - 财政年份:2021
- 资助金额:
$ 36.22万 - 项目类别:
Studentship
Pilot Scale Production of Lithium from UK Granites; transitioning to an electric vehicle future post Covid-19
英国花岗岩锂的中试规模生产;
- 批准号:
10004527 - 财政年份:2021
- 资助金额:
$ 36.22万 - 项目类别:
Small Business Research Initiative
Develop Nanostructured Electrodes for Lithium-air Batteries to Realize Sustainable and Efficient Energy Storage and a Universal Interatomic Potential to Speed up Future Research and Design Process
开发锂空气电池纳米结构电极,实现可持续、高效的能量存储和通用原子间潜力,加快未来的研究和设计进程
- 批准号:
517437-2018 - 财政年份:2020
- 资助金额:
$ 36.22万 - 项目类别:
Postgraduate Scholarships - Doctoral
Pilot Scale Production of Lithium from UK Granites; transitioning to an electric vehicle future post Covid-19
英国花岗岩锂的中试规模生产;
- 批准号:
76402 - 财政年份:2020
- 资助金额:
$ 36.22万 - 项目类别:
Small Business Research Initiative
LiFT - Lithium for Future Technology
LiFT - 未来技术的锂
- 批准号:
NE/V007009/1 - 财政年份:2020
- 资助金额:
$ 36.22万 - 项目类别:
Research Grant
LiFT - Lithium for Future Technology
LiFT - 未来技术的锂
- 批准号:
NE/V00736X/1 - 财政年份:2020
- 资助金额:
$ 36.22万 - 项目类别:
Research Grant
LiFT - Lithium for Future Technology
LiFT - 未来技术的锂
- 批准号:
NE/V006932/1 - 财政年份:2020
- 资助金额:
$ 36.22万 - 项目类别:
Research Grant
LiFT - Lithium for Future Technology
LiFT - 未来技术的锂
- 批准号:
NE/V007068/1 - 财政年份:2020
- 资助金额:
$ 36.22万 - 项目类别:
Research Grant
Develop Nanostructured Electrodes for Lithium-air Batteries to Realize Sustainable and Efficient Energy Storage and a Universal Interatomic Potential to Speed up Future Research and Design Process
开发锂空气电池纳米结构电极,实现可持续、高效的能量存储和通用原子间潜力,加快未来的研究和设计进程
- 批准号:
517437-2018 - 财政年份:2019
- 资助金额:
$ 36.22万 - 项目类别:
Postgraduate Scholarships - Doctoral