LiFT - Lithium for Future Technology

LiFT - 未来技术的锂

基本信息

  • 批准号:
    NE/V00736X/1
  • 负责人:
  • 金额:
    $ 50.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Along with many other countries worldwide, the UK is committed to achieving a low carbon economy. There is a plan to achieve net zero carbon dioxide emissions by 2050, with a key component of this plan being a ban on the sale of new petrol and diesel cars by 2035, and a switch to electric vehicles. These vehicles will require storage batteries that contain many components made of metals that have limited supplies. For example, a recent open letter authored by Professor Richard Herrington (principal investigator for the NHM on this proposal) explained that if the UK is to meet its electric car targets, it will require three quarters of the world's current total annual production of lithium - an essential component of modern electric vehicle batteries. Whilst current rates of lithium production are sufficient to meet global demand, we need to investigate additional lithium resources if we are to meet greenhouse gas emission targets. This proposal seeks to better understand the Earth system processes that concentrate lithium into mineral deposits, from which lithium can be mined in both an economically feasible and an environmentally responsible manner. Our central hypothesis is that major lithium deposits are largely formed in parts of the world where continental collision occurs as a consequence of plate tectonics.We will further test the hypothesis that within these collisional environments there is a "life-cycle" of tectonic processes that is reflected in the formation of different types of lithium deposits. Broadly speaking, in the first stage lithium is moderately concentrated in igneous rocks that are formed in this setting. Lithium is a relatively soluble element, which is readily leached and weathered from these rocks (particularly by hot geothermal water) and the lithium-rich waters may accumulate in basins that are also formed during continental collision. If the climate is arid, the waters evaporate to form a lithium-rich brine that can be an economically viable lithium deposit in its own right. In these brine basins, complex chemical processes and extreme microbial life may play a role in cycling elements and concentrating the lithium into sediments. Over time, the geothermal and volcanic activity ceases and the lithium-rich sediments may be buried and thus preserved for millions of years. Subsequently, these buried rocks may also serve as a source of lithium that can be extracted. With further burial and then heating, these lithium-rich sediments can reach temperatures at which they undergo melting and the formation of lithium-enriched pegmatites and granites. Again, these rocks may contain sufficient concentrations and amounts of lithium to represent a source of lithium that can be extracted for ultimate incorporation in electric vehicle batteries.At each stage of the life-cycle there are uncertainties regarding the source of lithium, and how it is transported and trapped. The different types of lithium deposits also vary in how easy it is to extract the lithium, and we need to consider how to do this in an environmentally responsible way. We will tackle these problems by bringing together a group of scientists who have considerable expertise in all aspects of this lithium journey. We will use a wide range of techniques, from simple geological observations through to highly sophisticated isotopic analyses and microbiological techniques, to track the behaviour of lithium. We will work alongside industry partners to identify the types of deposits that can be profitably extracted while simultaneously minimising any damage to the environment, and we will investigate the potential for more sustainable methods of lithium extraction using microbial processes. We anticipate that our research will provide industry with new targets for exploration for lithium resources. This will not only help secure a low carbon economy for the UK, but also provide important economic benefits to the UK and other nations.
与世界上许多其他国家一样,英国致力于实现低碳经济。中国有一项到2050年实现二氧化碳净零排放的计划,该计划的一个关键组成部分是到2035年禁止销售新的汽油和柴油汽车,并转向电动汽车。这些车辆将需要含有许多由金属制成的组件的蓄电池,而这些金属的供应有限。例如,NHM首席研究员理查德·赫林顿教授最近写的一封公开信解释说,如果英国要实现其电动汽车目标,它将需要世界目前锂年产量的四分之三--锂是现代电动汽车电池的基本成分。虽然目前的锂生产速度足以满足全球需求,但如果我们要实现温室气体排放目标,我们需要调查更多的锂资源。这项提议旨在更好地了解地球系统将锂浓缩成矿藏的过程,从矿藏中可以以经济可行和对环境负责的方式开采锂。我们的中心假设是,主要的锂矿床主要形成于世界上由于板块构造而发生大陆碰撞的部分地区。我们将进一步检验这一假设,即在这些碰撞环境中,存在一个反映在不同类型锂矿床形成中的构造过程的“生命周期”。广义地说,在第一阶段,锂在这种背景下形成的火成岩中适度集中。锂是一种相对可溶的元素,很容易从这些岩石中淋溶和风化(特别是被热水),富锂水可能聚集在也是在大陆碰撞期间形成的盆地中。如果气候干燥,海水蒸发形成富锂卤水,本身就可以成为经济上可行的锂矿床。在这些卤水盆地中,复杂的化学过程和极端的微生物生命可能在元素循环和将锂浓缩到沉积物中发挥作用。随着时间的推移,地热和火山活动停止,富锂沉积物可能被埋藏起来,从而保存数百万年。随后,这些埋藏的岩石也可能成为可以提取的锂的来源。随着进一步的埋藏和加热,这些富锂沉积物的温度可以达到融化并形成富锂伟晶岩和花岗岩的温度。同样,这些岩石可能含有足够的浓度和数量的锂,以代表锂的来源,可以提取出来,最终并入电动汽车电池。在生命周期的每个阶段,关于锂的来源,以及它是如何运输和捕获的,都存在不确定性。不同类型的锂矿床提取锂的难度也不同,我们需要考虑如何以对环境负责的方式做到这一点。我们将通过召集一群在锂之旅的各个方面都拥有相当专业知识的科学家来解决这些问题。我们将使用广泛的技术,从简单的地质观察到高度复杂的同位素分析和微生物技术,来追踪锂的行为。我们将与行业合作伙伴合作,确定可以盈利开采的矿藏类型,同时将对环境的破坏降至最低,并将调查使用微生物工艺进行更可持续的锂提取方法的可能性。我们预计,我们的研究将为业界提供锂资源勘探的新目标。这不仅有助于英国实现低碳经济,也将为英国和其他国家带来重要的经济效益。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Density functional theory calculations of equilibrium oxygen isotope fractionation between borate minerals and aqueous fluids
硼酸盐矿物与水相流体之间平衡氧同位素分馏的密度泛函理论计算
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Palmer其他文献

The pro-nilpotent Lawrence-Krammer-Bigelow representation
亲幂零的 Lawrence-Krammer-Bigelow 表示
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Palmer;Arthur Souli'e
  • 通讯作者:
    Arthur Souli'e
Controlled prospective endomysial antibody screening for celiac disease in iron deficiency anemia
  • DOI:
    10.1016/s0016-5085(00)83575-1
  • 发表时间:
    2000-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rupert A. Ransford;Michael J. Hall;Martin Palmer;Valerie Bailey;Sara Price;Mark Hayes
  • 通讯作者:
    Mark Hayes
Homology of configuration-mapping and -section spaces
配置映射和节空间的同源性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Palmer;U. Tillmann
  • 通讯作者:
    U. Tillmann
A unified functorial construction of homological representations of families of groups
群族同调表示的统一函数构造
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Palmer;Arthur Soulié
  • 通讯作者:
    Arthur Soulié
Configuration-mapping spaces and homology stability
配置映射空间和同源稳定性

Martin Palmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Palmer', 18)}}的其他基金

The role of marine diagenesis of tephra in the carbon cycle
火山灰海洋成岩作用在碳循环中的作用
  • 批准号:
    NE/K00543X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
IODP Leg 340 Lesser Antilles
IODP 航段 340 小安的列斯群岛
  • 批准号:
    NE/J020168/1
  • 财政年份:
    2012
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
The impact of submarine diagenesis of tephra on seawater chemistry
海底成岩作用对海水化学的影响
  • 批准号:
    NE/D004020/1
  • 财政年份:
    2007
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant

相似海外基金

High-energy lithium-air batteries, a breathable future for renewable energy
高能锂空气电池,可再生能源的呼吸未来
  • 批准号:
    DE240100868
  • 财政年份:
    2024
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Discovery Early Career Researcher Award
Designing New Production Processes for Lithium-Ion Batteries for a Sustainable Future
设计新的锂离子电池生产工艺,实现可持续发展的未来
  • 批准号:
    2805419
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Studentship
Pilot Scale Production of Lithium from UK Granites; transitioning to an electric vehicle future post Covid-19
英国花岗岩锂的中试规模生产;
  • 批准号:
    10004527
  • 财政年份:
    2021
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Small Business Research Initiative
Develop Nanostructured Electrodes for Lithium-air Batteries to Realize Sustainable and Efficient Energy Storage and a Universal Interatomic Potential to Speed up Future Research and Design Process
开发锂空气电池纳米结构电极,实现可持续、高效的能量存储和通用原子间潜力,加快未来的研究和设计进程
  • 批准号:
    517437-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Pilot Scale Production of Lithium from UK Granites; transitioning to an electric vehicle future post Covid-19
英国花岗岩锂的中试规模生产;
  • 批准号:
    76402
  • 财政年份:
    2020
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Small Business Research Initiative
LiFT - Lithium for Future Technology
LiFT - 未来技术的锂
  • 批准号:
    NE/V006940/1
  • 财政年份:
    2020
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
LiFT - Lithium for Future Technology
LiFT - 未来技术的锂
  • 批准号:
    NE/V007009/1
  • 财政年份:
    2020
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
LiFT - Lithium for Future Technology
LiFT - 未来技术的锂
  • 批准号:
    NE/V006932/1
  • 财政年份:
    2020
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
LiFT - Lithium for Future Technology
LiFT - 未来技术的锂
  • 批准号:
    NE/V007068/1
  • 财政年份:
    2020
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Research Grant
Develop Nanostructured Electrodes for Lithium-air Batteries to Realize Sustainable and Efficient Energy Storage and a Universal Interatomic Potential to Speed up Future Research and Design Process
开发锂空气电池纳米结构电极,实现可持续、高效的能量存储和通用原子间潜力,加快未来的研究和设计进程
  • 批准号:
    517437-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 50.79万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了