NSFGEO-NERC Earthquake nucleation versus episodic slow slip: what controls the mode of fault slip?

NSFGEO-NERC 地震成核与幕式慢滑移:什么控制断层滑移模式?

基本信息

  • 批准号:
    NE/V011804/1
  • 负责人:
  • 金额:
    $ 52.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Earthquakes, produced by rapid slip on faults, account for the majority of deaths from a range of natural disasters which amounts to about 60,000 people a year worldwide - around 90 percent of which occur in developing countries. Slip can occur in three ways on faults. These are (1) earthquake slip; (2) stable fault creep driven by plate tectonic loading rates; and (3) episodic slow slip events, where fault slip spontaneously accelerates but never reaches earthquake slip speeds. Episodic slow slip events can release the same amount of energy as earthquakes but over days to weeks rather than seconds to minutes. They most commonly occur in certain regions of subduction zones and have been linked to elevated pore pressures. These three modes of fault slip are vital to understand, as episodic slow slip and fault creep relieve stress build up and reduce seismic hazard, yet also transfer stress from one part of the fault to another, ultimately affecting the nucleation of destructive earthquakes.In this project, we will provide physical constraints from combined experiments and numerical modelling to determine the controlling factors leading to stable fault creep, episodic slow slip, or earthquakes. As yet, it is not understood what puts the brakes on some instabilities creating slow fault slip yet allows others to accelerate to rapid slip speeds that cause earthquakes. A transition of some sort from unstable frictional sliding (typically viewed as leading to earthquakes) to stable frictional sliding (typically viewed as leading to fault creep) while the sliding velocity is increasing must promote sustained slow slip on faults. The nature of this stability transition is widely debated and the range of conditions under which it may occur are ill defined. We will investigate the key hypotheses proposed to explain such stability transition and the resulting slow slip events, which include (1) evolution in friction properties related to very slow slip rates at elevated temperatures, (2) the role of pore fluid pressure on stability transitions, where small increases in pore volume of the granular shearing material in the fault produces a large decrease in pore pressure resulting in increase in the shear resistance (dilatant strengthening), and (3) spatial variation in fault properties and conditions leading to a situation where nucleation of an earthquake can occur but is limited by adjacent regions with stable frictional properties. The work will involve integrated laboratory experiments and numerical modelling. Controlled lab experiments will measure the evolution of fault friction under previously unexplored temperature, pore fluid pressure, and slip rate conditions relevant to natural faults. We will quantify the evolution of frictional properties from very slow, tectonic fault slip rates of millimetres per year, to those through the episodic slow slip range of millimetres per day, and into the slip rates of meters per second where earthquakes occur. Fluid pressure changes promoted by compaction and dilation during slip will also be characterized. Numerical modelling of the experiments at the laboratory scale will help to ensure that the coupled physical mechanisms involved are understood and captured in our mathematical descriptions. The large-scale behaviour of faults with the properties defined by the experiments will be explored by numerical modelling at the scale of natural faults. The numerical modelling will relate the experimental findings to field observations of episodic slow slip and earthquake nucleation and investigate the role of spatial variations in fault properties on the occurrence of episodic slow slip events vs. earthquakes. A key deliverable for this work would be identification of the range of fault conditions and physical mechanisms under which episodic slow slip, fault creep, or earthquakes can occur, leading ultimately to improved seismic hazard forecasting.
由断层快速滑动产生的地震是一系列自然灾害造成的死亡的主要原因,全世界每年约有6万人死亡,其中约90%发生在发展中国家。断层滑动有三种方式。它们是(1)地震滑动;(2)板块构造加载速率驱动的稳定断层蠕动;(3)幕式缓慢滑动事件,其中断层滑动自发加速,但从未达到地震滑动速度。间歇性的缓慢滑动事件可以释放与地震相同的能量,但需要几天到几周,而不是几秒到几分钟。它们最常出现在俯冲带的某些区域,并与孔隙压力升高有关。断层滑动的这三种模式对于理解是至关重要的,因为幕式缓慢滑动和断层蠕动可以缓解应力积累并降低地震危险性,但也可以将应力从断层的一部分转移到另一部分,最终影响破坏性地震的成核。在这个项目中,我们将通过结合实验和数值模拟来提供物理约束,以确定导致稳定断层蠕动的控制因素,阶段性缓慢滑动或地震。到目前为止,人们还不知道是什么阻止了一些造成缓慢断层滑动的不稳定性,但又允许其他断层加速到导致地震的快速滑动速度。当滑动速度增加时,从不稳定的摩擦滑动(通常被视为导致地震)到稳定的摩擦滑动(通常被视为导致断层蠕动)的某种转变必然会促进断层上持续的缓慢滑动。这种稳定性转变的性质是广泛争论的,它可能发生的条件范围是不明确的。我们将研究解释这种稳定性转变和由此产生的缓慢滑动事件的关键假设,包括(1)与高温下非常缓慢的滑动速率相关的摩擦特性的演变,(2)孔隙流体压力对稳定性转变的作用,断层中粒状剪切物质孔隙体积的小幅度增加会导致孔隙压力的大幅度降低,剪切阻力(剪切强化),以及(3)断层性质和条件的空间变化,导致地震成核可能发生,但受到具有稳定摩擦性质的相邻区域的限制。这项工作将涉及综合实验室实验和数值模拟。受控实验室实验将测量在以前未探索的温度、孔隙流体压力和与天然断层相关的滑动速率条件下断层摩擦的演变。我们将量化摩擦特性的演化,从非常缓慢的构造断层滑动速率(毫米/年),到那些通过幕式缓慢滑动范围(毫米/天),再到发生地震的滑动速率(米/秒)。流体压力的变化,促进了压实和扩张过程中滑动的特点。在实验室规模的实验的数值模拟将有助于确保所涉及的耦合物理机制的理解和捕获在我们的数学描述。将通过自然断层尺度的数值模拟来探讨断层的大尺度行为与实验确定的性质。数值模拟将把实验结果与现场观测的幕式慢滑和地震成核联系起来,并研究断层性质的空间变化对幕式慢滑事件与地震发生的作用。这项工作的一个关键成果是确定断层条件和物理机制的范围,在这些条件和机制下,可能发生幕式缓慢滑动、断层蠕动或地震,最终改善地震灾害预测。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Effect of Clay Content on the Dilatancy and Frictional Properties of Fault Gouge
The effect of clay content on the dilatancy and frictional properties of fault gouge.
粘土含量对断层泥剪胀和摩擦特性的影响
  • DOI:
    10.1002/essoar.10512743.1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashman I
  • 通讯作者:
    Ashman I
A novel automated procedure for determining steady-state friction conditions in the context of rate- and state- friction analysis
一种新颖的自动化程序,用于在速率和状态摩擦分析的背景下确定稳态摩擦条件
  • DOI:
    10.5194/egusphere-egu23-15563
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giacomel P
  • 通讯作者:
    Giacomel P
The stabilizing effect of high pore-fluid pressure along subduction megathrust faults: Evidence from friction experiments on accretionary sediments from the Nankai Trough
  • DOI:
    10.1016/j.epsl.2021.117161
  • 发表时间:
    2021-09-06
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Bedford, John D.;Faulkner, Daniel R.;Hirose, Takehiro
  • 通讯作者:
    Hirose, Takehiro
Scale Dependence of Earthquake Rupture Prestress in Models With Enhanced Weakening: Implications for Event Statistics and Inferences of Fault Stress
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Faulkner其他文献

The effect of solvent in evaporation-induced self-assembly: A case study of benzene periodic mesoporous organosilica
溶剂对蒸发诱导自组装的影响:以苯周期介孔有机硅为例
  • DOI:
    10.1007/s11426-011-4457-x
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wendong Wang;Daniel Faulkner;J. Moir;G. Ozin
  • 通讯作者:
    G. Ozin
Discovery and evaluation of a single source selenium sulfide precursor for the synthesis of alloy PbSxSe1−x nanocrystals
用于合成合金 PbSxSe1−x 纳米晶体的单源硫化硒前驱体的发现和评估
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Thomson;Xiang Wang;Laura B. Hoch;Daniel Faulkner;S. Petrov;G. Ozin
  • 通讯作者:
    G. Ozin

Daniel Faulkner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Faulkner', 18)}}的其他基金

The properties, mechanisms, and hazards of interplate and intraplate earthquakes in India
印度板间和板内地震的性质、机制和危害
  • 批准号:
    NE/Z503484/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Research Grant
The physical properties of an active subduction megathrust
活跃俯冲巨型逆冲断层的物理特性
  • 批准号:
    NE/S015531/1
  • 财政年份:
    2019
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Research Grant
Impact of hydraulic fracturing in the overburden of shale resource plays: Process-based evaluation (SHAPE-UK)
水力压裂对页岩资源区覆盖层的影响:基于过程的评估 (SHAPE-UK)
  • 批准号:
    NE/R017484/1
  • 财政年份:
    2018
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Research Grant
How do earthquake ruptures propagate through clay-rich fault zones?
地震破裂如何通过富含粘土的断层带传播?
  • 批准号:
    NE/P002943/1
  • 财政年份:
    2017
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Research Grant
Evolution of the physical, geochemical and mechanical properties of the Alpine Fault Zone: A journey through an active plate boundary
高山断层带物理、地球化学和力学特性的演变:穿越活动板块边界的旅程
  • 批准号:
    NE/J024449/1
  • 财政年份:
    2012
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Research Grant
Imaging faults at depth: the seismic transport properties of fault zones
深度断层成像:断层带的地震传输特性
  • 批准号:
    NE/F019920/1
  • 财政年份:
    2008
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Research Grant

相似海外基金

NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    NE/X000656/1
  • 财政年份:
    2025
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Research Grant
NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
  • 批准号:
    NE/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    NE/Z000254/1
  • 财政年份:
    2025
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Research Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317936
  • 财政年份:
    2024
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317938
  • 财政年份:
    2024
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Standard Grant
NERC-NSFGEO: Imaging the magma storage region and hydrothermal system of an active arc volcano
NERC-NSFGEO:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    2404029
  • 财政年份:
    2024
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334541
  • 财政年份:
    2024
  • 资助金额:
    $ 52.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了