Microbial fuel development framework using synthetic biology and fuel design for next generation renewable fuel production
利用合成生物学和燃料设计进行下一代可再生燃料生产的微生物燃料开发框架
基本信息
- 批准号:NE/V01983X/1
- 负责人:
- 金额:$ 1.62万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"EPSRC : Melissa Poma : EP/S023836/1"Biofuel production from organic waste and biomass is a promising source of renewable energy [1]. The employment of bacteria as cell factories is an attractive means for sustainable large-scale production of energy molecules. Bioengineering research has made impressive progress in identifying and optimizing microbial metabolic pathways involved in the biosynthesis of fuel-like hydrocarbons. Such metabolic routes include derivations of the amino acid [2], the mevalonate [3], the polyketide [4], and the fatty acid pathways [5]. These natural metabolic routes have been engineered and modestly implemented in native and non-native hosts [6], enabling the microbial cell to assimilate simple sugars into value-added molecules. However, industrial production rate has not been achieved yet. Moreover, this biosynthesis cannot be considered entirely sustainable, unless it is decoupled from the use of simple sugars as feedstock. The use of lignocellulosic biomass as feedstocks for the production of substrate needed for microbial fuel production has gained attention due to its abundance and low cost [7]. The cellulose and hemicellulose portions of the biomass can be fermented by microbes into useful simple sugars, which will serve as carbon sources for microbial fuel production [8]. This process is accompanied with loss of simple sugars since these are incorporated into the cells during growth. The use of enzymes instead of microbes can circumvent the sugar loss, but enzymes are costly and faced with low biochemical reaction rates or product feedback inhibition, leading to low product formation [9]. At the heart of efficient biofuel production lays the challenge of metabolic engineering [8]. Thanks to recent developments in synthetic biology and genetic engineering, manipulating heterologous enzyme expression to construct biofuel-producing pathways in a microbial host is no longer the roadblock it once was [10]. However, optimal pathway activity is rarely achieved by simple expression (or overexpression) of required enzymes; product formation can be affected by many other factors including consumption of substrates by competing pathways, energetic and redox imbalances caused by engineered pathway activity, and inhibition due to product accumulation. Metabolomic analyses can guide pathway optimization by identifying sources of metabolic inefficiency, revealing strategies to increase activity of engineered pathways.The novelty of my project and its contribution to the existing literature will be proposed through experimental research where I develop a model bacterium Zymomonas mobilis that could serve as host for the engineering of a designer cellulosome apparatus, enabling control over the composition and the position of the cellulases, and the linkers' length. I will develop processes which mimic natural cellulolysis in model industrial bacteria to provide them with a novel function and employ them as biofuel refineries. This model bacterium will be expected to have high growth rate, survive under standard cultivation conditions, be capable for high substrate uptake, have high ethanol tolerance, produce attractive metabolic precursors, and generally recognized as safe, with well-known genetic engineering tool-set.1. Liao JC, Mi L, Pontrelli S, Luo S. Nat Rev Microbiol 2016, 14.2. Akita et al. Appl Microbiol Biotechnol. 2015, 99, 991-9993. Peralta-Yahya, et al. Nature 2012, 488, 320-328.4. Zargar et al. Current Opinion in Biotechnology 2017, 45, 156-1635. Ledesma-Amaro et al. Progress in Lipid Research 2016, 61, 40-506. Schirmer at al. Science 2010, 329, 559-5627. Alfenore S, Molina-Jouve C. Process Biochemistry 2016;51.8. Ruffing AM. Liquid, Gaseous and Solid Biofuels-Conversion Techniques. 2013:263-99.9. Ravindran R, Jaiswal AK. Bioresource technology. 2016;199:92-102.10. Liu R, Bassalo MC, Zeitoun RI, Gill RT. Metab Eng 2015, 32:143-154.
“EPSRC:Melissa Poma:EP/S 023836/1“从有机废物和生物质生产生物燃料是一种有前途的可再生能源[1]。利用细菌作为细胞工厂是一种可持续大规模生产能量分子的有吸引力的手段。生物工程研究在识别和优化参与燃料类碳氢化合物生物合成的微生物代谢途径方面取得了令人印象深刻的进展。这些代谢途径包括氨基酸[2]、甲羟戊酸[3]、聚酮化合物[4]和脂肪酸途径[5]的衍生。这些天然代谢途径已经在天然和非天然宿主中进行了设计和适度实施[6],使微生物细胞能够将单糖同化为增值分子。然而,工业生产率尚未实现。此外,这种生物合成不能被认为是完全可持续的,除非它与使用单糖作为原料脱钩。使用木质纤维素生物质作为生产微生物燃料生产所需的底物的原料,由于其丰富和低成本而受到关注[7]。生物质的纤维素和半纤维素部分可以通过微生物发酵成有用的单糖,其将用作微生物燃料生产的碳源[8]。这个过程伴随着单糖的损失,因为这些单糖在生长过程中被掺入细胞中。使用酶代替微生物可以避免糖损失,但酶成本高,并且面临低生化反应速率或产物反馈抑制,导致产物形成低[9]。高效生物燃料生产的核心是代谢工程的挑战[8]。由于合成生物学和基因工程的最新发展,操纵异源酶表达以在微生物宿主中构建生物燃料生产途径不再是曾经的障碍。然而,最佳途径活性很少通过所需酶的简单表达(或过表达)来实现;产物形成可能受到许多其他因素的影响,包括竞争途径对底物的消耗、由工程化途径活性引起的能量和氧化还原失衡以及由于产物积累引起的抑制。代谢组学分析可以通过识别代谢效率低下的来源来指导途径优化,揭示提高工程化途径活性的策略。我的项目的新奇及其对现有文献的贡献将通过实验研究提出,在实验研究中,我开发了一种模型细菌运动发酵单胞菌,它可以作为设计师纤维素体装置的工程宿主,能够控制纤维素酶的组成和位置以及接头的长度。我将开发模拟自然纤维素分解的过程,为它们提供一种新的功能,并将它们用作生物燃料精炼厂。该模式菌将被期望具有高生长速率、在标准培养条件下存活、能够高底物摄取、具有高乙醇耐受性、产生有吸引力的代谢前体、并且通常被认为是安全的、具有公知的基因工程工具集。廖锦春,米玲,彭翠丽,罗世. Nat Rev Microbiol 2016,14.2。秋田等人,应用微生物生物技术。2015,99,991-9993中所述。Peralta-Yahya等人,Nature 2012,488,320-328.4. Zargar等人,Current Opinion in Biotechnology 2017,45,156-1635。Ledesma-Amaro等人,Progress in Lipid Research 2016,61,40-506。Schirmer等人,Science 2010,329,559-5627。Alfenore S,Molina-Jouve C.工艺生物化学2016;51.8. Ruffing AM.液体、气体和固体生物燃料转化技术。2013年:263-99.9。Ravindran R,Jaiswal AK.生物资源技术。2016;199:92-102.10. Liu R,Bassalo MC,Zeitoun RI,Gill RT. Metab Eng 2015,32:143-154.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulugbek Azimov其他文献
Utilisation of complex sugars for biomass production, and low-energy lipid extraction from emChlorella vulgaris/em and emNannochloropsis oculata/em for sustainable biodiesel production
利用复合糖类进行生物质生产,以及从普通小球藻(*Chlorella vulgaris*)和眼点拟微绿球藻(*Nannochloropsis oculata*)中进行低能耗脂质提取以用于可持续生物柴油生产
- DOI:
10.1016/j.algal.2024.103857 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:4.500
- 作者:
Victor Okoro;Jose Munoz;Ulugbek Azimov - 通讯作者:
Ulugbek Azimov
Assessment of ammonia distribution in a livestock farm using CFD simulations
利用计算流体动力学模拟评估畜牧场中氨的分布
- DOI:
10.1016/j.atech.2023.100376 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:5.700
- 作者:
Raviteja Konapathri;Ulugbek Azimov - 通讯作者:
Ulugbek Azimov
Chapter 8: Advanced Combustion in Natural Gas-Fueled Engines, in “Natural Gas Engines for Transportation and Power Generation, (Eds.) Srinivasan, K.K., Agarwal, A.K., Krishnan, S.R., Mulone, V."
第 8 章:天然气燃料发动机的高级燃烧,载于“运输和发电用天然气发动机,(编辑)Srinivasan, K.K.、Agarwal, A.K.、Krishnan, S.R.、Mulone, V”。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ulugbek Azimov;Nobuyuki Kawahara;Kazuya Tsuboi;Eiji Tomita - 通讯作者:
Eiji Tomita
Ulugbek Azimov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
- 批准号:22302168
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向Fuel2X的稳定自维持“冷焰”动力学及产物调控
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
O2/CO2气氛下强斯蒂芬流对炭粒燃烧影响的实验研究及其模化
- 批准号:51076089
- 批准年份:2010
- 资助金额:38.0 万元
- 项目类别:面上项目
相似海外基金
Development of practical type of sediment microbial fuel cell with food waste as a substrate
以餐厨垃圾为基质的实用型沉积物微生物燃料电池的研制
- 批准号:
23K11495 - 财政年份:2023
- 资助金额:
$ 1.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of sediment microbial fuel cells for improvement of water quality and reduction in greenhouse gas emissions in agricultural drainage canals
开发沉积物微生物燃料电池以改善农业排水渠的水质并减少温室气体排放
- 批准号:
22H02458 - 财政年份:2022
- 资助金额:
$ 1.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Escherichia coli catalyst with highly integrated excellent functions for high performance of microbial fuel cell
开发高度集成优异功能的大肠杆菌催化剂,实现微生物燃料电池的高性能
- 批准号:
21K04796 - 财政年份:2021
- 资助金额:
$ 1.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of strong alkaline microbial fuel cell utilizing indigo fermentation suspensions
利用靛蓝发酵悬浮液开发强碱性微生物燃料电池
- 批准号:
21K19868 - 财政年份:2021
- 资助金额:
$ 1.62万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of an environmental sensing device powered by microbial fuel cells.
开发由微生物燃料电池供电的环境传感装置。
- 批准号:
20K06355 - 财政年份:2020
- 资助金额:
$ 1.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MicroFuelPro: Microbial fuel development framework using synthetic biology for next generation drop-in renewable fuel production
MicroFuelPro:利用合成生物学进行下一代直接可再生燃料生产的微生物燃料开发框架
- 批准号:
2634440 - 财政年份:2020
- 资助金额:
$ 1.62万 - 项目类别:
Studentship
Integrated Analysis of Microbial and Genomic data in Obstructive Lung Disease (I AM GOLD) Study
阻塞性肺疾病(I AM GOLD)研究中微生物和基因组数据的综合分析
- 批准号:
10017311 - 财政年份:2019
- 资助金额:
$ 1.62万 - 项目类别:
Integrated Analysis of Microbial and Genomic data in Obstructive Lung Disease (I AM GOLD) Study
阻塞性肺疾病(I AM GOLD)研究中微生物和基因组数据的综合分析
- 批准号:
10213124 - 财政年份:2019
- 资助金额:
$ 1.62万 - 项目类别:
Development of microbial fuel cell biosensor for detection of naphthenic acids
环烷酸检测微生物燃料电池生物传感器的研制
- 批准号:
530809-2018 - 财政年份:2019
- 资助金额:
$ 1.62万 - 项目类别:
Collaborative Research and Development Grants
Integrated Analysis of Microbial and Genomic data in Obstructive Lung Disease (I AM GOLD) Study
阻塞性肺疾病(I AM GOLD)研究中微生物和基因组数据的综合分析
- 批准号:
10448399 - 财政年份:2019
- 资助金额:
$ 1.62万 - 项目类别: