MicroFuelPro: Microbial fuel development framework using synthetic biology for next generation drop-in renewable fuel production
MicroFuelPro:利用合成生物学进行下一代直接可再生燃料生产的微生物燃料开发框架
基本信息
- 批准号:2634440
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The employment of bacteria as cell factories is an attractive means for sustainable large production of energy molecules. Bioengineering research have made impressive progresses in identifying and optimizing microbial metabolic pathways involved in the biosynthesis of fuel-like hydrocarbons. Such metabolic routes include: derivations of amino acid pathway, the mevalonate pathway, the polyketide pathway, and the fatty acid pathway. These natural metabolic routes have been engineered and modestly implemented in native and non-native hosts, enabling the microbial cell to assimilate simple sugars into value-added molecules. However, industrial production rate has not been achieved yet, moreover, this biosynthesis cannot be considered entirely sustainable, unless it is decoupled from the use of simple sugars as feedstock. MicroFuelPro project sets the challenge of enhancing metabolic fluxes to achieve large scale biofuel production through the microbial assimilation of waste material, such as lignocelluloses, into energy molecules. The direct conversion of waste materials into fuel-like molecules has not been fully explored, thus, the objective of the project will lies in the identification of genes that enable this catabolic and anabolic process efficiently. An attractive candidate to host biofuel synthesis is the Gram-negative bacterium Zymomonas mobilis, which has a high substrate uptake and striking ethanol yield. However, Z. mobilis does not naturally degrade lignocellulose, hence, to provide it with this function, relevant genes will be identified in lignocellulolytic microorganisms and expressed in the host platform. Most likely, the solely heterologous expression of genes will not be sufficient to enable an efficient substrate assimilation, thus, further bioengineering tools (e.g. CRISPR, genome editing, ribosome binding molecules etc.) will be used to generate a synthetic high-performance metabolism. The same approach will be exerted in other different bacteria to synthesize compounds such as fatty acids, terpenoids, polyketides and higher alcohols. The pathways involved in these products synthesis will be either tweaked in native host or heterogously engineered in model bacteria that show features like high growth rate, high tolerance to solvent toxicity, or ability of metabolizing alternative feedstocks. The ultimate goal will be the comparison of an array of engineered bacteria to detect the most suitable candidates for lignocellulose biodegradation and conversion into value-added molecules. After the production of fuel molecules, the fuel design properties will be identified, and surrogate fuel pallet will be chosen. Ideally, each palette compound would be representative of a class of compounds found in the target renewable fuel. The surrogate palette will contain representatives from each of the major hydrocarbon families found in market hydrocarbon fuels: n-alkanes, iso-alkanes, cycloalkanes, aromatics, and naphtho-aromatics. 13C (carbon) and 1H (proton) nuclear magnetic resonance (NMR) spectroscopy and GC-MS will be used to quantify the compositional characteristics of each target renewable fuel in this study. The next step will be to identify and run an optimization study to determine how much of each palette compound should be included in the surrogate to achieve the property targets of renewable fuels. Once each surrogate composition is determined, the pure palette compounds will be blended together to produce the surrogates, and each surrogate will be tested to determine whether the property targets are achieved within their desired tolerances. The outcomes of the fuel design process will be correlated with the metabolic pathways. Through this analysis we will be able to identify and design the most efficient pathway not only in terms of yield but also in terms of fuel properties, sustainability and suitability to conventional and future power generation systems.
利用细菌作为细胞工厂是一种可持续大量生产能量分子的有吸引力的手段。生物工程研究在确定和优化参与燃料类烃生物合成的微生物代谢途径方面取得了令人印象深刻的进展。这些代谢途径包括:氨基酸途径、甲羟戊酸途径、聚酮途径和脂肪酸途径的衍生物。这些天然代谢途径已经在天然和非天然宿主中进行了设计和适度实施,使微生物细胞能够将单糖同化为增值分子。然而,工业生产率尚未实现,此外,这种生物合成不能被认为是完全可持续的,除非它与使用单糖作为原料脱钩。MicroFuelPro项目设定了增强代谢通量的挑战,以通过微生物将废物(如木质纤维素)同化为能量分子来实现大规模生物燃料生产。将废料直接转化为燃料样分子尚未得到充分探索,因此,该项目的目标将在于鉴定有效实现这种分解代谢和合成代谢过程的基因。革兰氏阴性菌运动发酵单胞菌(Zymomonasmobilis)是生物燃料合成宿主的一个有吸引力的候选者,它具有高底物摄取和惊人的乙醇产量。然而,Z. mobilis不天然降解木质纤维素,因此,为了使其具有这种功能,将在木质纤维素分解微生物中鉴定相关基因并在宿主平台中表达。最有可能的是,基因的单独异源表达将不足以实现有效的底物同化,因此,需要进一步的生物工程工具(例如CRISPR、基因组编辑、核糖体结合分子等)。将被用于合成高性能代谢物。同样的方法将在其他不同的细菌中发挥作用,以合成化合物,如脂肪酸,萜类化合物,聚酮化合物和高级醇。参与这些产物合成的途径将在天然宿主中进行调整,或在模型细菌中进行异源工程改造,这些细菌显示出高生长速率,对溶剂毒性的高耐受性或代谢替代原料的能力。最终目标将是比较一系列工程菌,以检测最适合木质纤维素生物降解和转化为增值分子的候选者。在燃料分子生成之后,将识别燃料设计特性,并且将选择替代燃料托盘。理想地,每种调色板化合物将代表在目标可再生燃料中发现的一类化合物。替代调色板将包含来自市场烃燃料中发现的每个主要烃族的代表:正烷烃、异烷烃、环烷烃、芳烃和萘并芳烃。13 C(碳)和1H(质子)核磁共振(NMR)光谱和GC-MS将用于量化本研究中每种目标可再生燃料的组成特征。下一步将是确定并进行优化研究,以确定每种调色板化合物应包含在替代物中的多少,以实现可再生燃料的性能目标。一旦确定了每种替代物组成,将纯调色板化合物混合在一起以产生替代物,并且将测试每种替代物以确定是否在其期望的公差内实现性能目标。燃料设计过程的结果将与代谢途径相关。通过这种分析,我们将能够确定和设计最有效的途径,不仅在产量方面,而且在燃料特性、可持续性和对传统和未来发电系统的适用性方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
水热炭的微生物陈化(Microbial-aged Hydrochar)及其对稻田氨挥发的影响机制
- 批准号:41877090
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
- 批准号:
23K11483 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of practical type of sediment microbial fuel cell with food waste as a substrate
以餐厨垃圾为基质的实用型沉积物微生物燃料电池的研制
- 批准号:
23K11495 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Engineered Biofilms for Bioenergy Generation and Wastewater Treatment in Microbial Fuel Cells (MFCs)
用于微生物燃料电池 (MFC) 中生物能源生成和废水处理的工程生物膜
- 批准号:
22K21329 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of sediment microbial fuel cells for improvement of water quality and reduction in greenhouse gas emissions in agricultural drainage canals
开发沉积物微生物燃料电池以改善农业排水渠的水质并减少温室气体排放
- 批准号:
22H02458 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Optimal Design and Performance Limits of Microbial Fuel Cell-based Water Treatment through Model Calculations
通过模型计算微生物燃料电池水处理的优化设计和性能极限
- 批准号:
22H01625 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Diversity and functional potential of biofilms in sediment microbial fuel cells
沉积物微生物燃料电池中生物膜的多样性和功能潜力
- 批准号:
572310-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Research and scale-up of a microbial fuel cell for renewable energy storage
用于可再生能源存储的微生物燃料电池的研究和规模化
- 批准号:
RGPIN-2019-05913 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Bioelectricity generation from tree microbial fuel cell
树木微生物燃料电池产生生物电
- 批准号:
21K12309 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Escherichia coli catalyst with highly integrated excellent functions for high performance of microbial fuel cell
开发高度集成优异功能的大肠杆菌催化剂,实现微生物燃料电池的高性能
- 批准号:
21K04796 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Microbial fuel development framework using synthetic biology and fuel design for next generation renewable fuel production
利用合成生物学和燃料设计进行下一代可再生燃料生产的微生物燃料开发框架
- 批准号:
NE/V01983X/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant