Biogeochemical processes and ecosystem function in changing polar systems and their global impacts (BIOPOLE)

极地系统变化中的生物地球化学过程和生态系统功能及其全球影响(BIOPOLE)

基本信息

  • 批准号:
    NE/W004933/1
  • 负责人:
  • 金额:
    $ 1137.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Climate change is threatening two key ecosystem services provided by the ocean for humankind: food and storage of atmospheric carbon. The polar regions are major influences on both but are also experiencing the most dramatic and rapid changes. A better understanding of the factors affecting how nutrients are supplied and biologically processed in the ocean is needed to assess the future risk to quantify the dependence of the Earth system, and humanity, on this essential global function that supports global productivity and fisheries. Key nutrients, such as nitrogen (N) and phosphorus (P), are not evenly distributed across the global ocean but are in excess in the polar regions from where they are exported to lower latitudes by ocean circulation. Living matter is produced through combining N, P and carbon (C) (and other minor elements) in a ratio that is more or less the same in most regions of the global ocean. However, the ratios found in the polar regions are substantially different. This is because, firstly, polar nutrients come from a diversity of sources (glaciers, sea-ice, rivers and other seas). Secondly, the polar ecosystem processes these nutrients and carbon in distinct ways. This results in i) a nutrient surplus, which is exported from the polar oceans and supports productivity globally, and ii) the transport of carbon from the atmosphere into deep waters distant from the atmosphere. The pressing issue is that rapid climatic change at the poles is changing both the supply of nutrients and the processing capacity of their ecosystems. This threatens not only the marine food stocks on which humanity depends but also the biological drawdown of C in the oceans, a critical regulator of global climate. Our ability to fully characterise and predict this threat is limited by inadequate representation of polar biogeochemical and ecosystem processes in Earth System Models (ESMs). BIOPOLE represents and links together many of the major environmental research institutes in the UK, who will work with national and international partners to address this problem. We propose an ambitious combination of focussed observations, novel analyses and computer simulations to radically improve our ability to measure, understand and predict how nutrient supply and C storage in the polar regions will be affected by climate change. BIOPOLE will further identify and quantify the wider global impacts to ocean productivity and fisheries. We will sample and collect data at both poles to take a full Earth system perspective of this problem. The latest experimental and observational techniques will delineate C and nutrient processing by the unique polar communities. It will include the use of novel autonomous technologies to collect data over longer periods and greater areas than can be achieved by ships alone. Global modelling will be informed by the new understanding generated and used alongside other modelling approaches to better quantify the role that polar oceans play in sustaining global oceanic primary productivity and fish stocks, and to predict future trends. Climate change is proceeding faster at the poles than any other region, resulting in sea-ice loss and glacial melting. There is a clear urgency in understanding the full biogeochemical and ecosystem level implications of these changes for the polar regions themselves and for the wider Earth system. As ice retreats, the fragile and globally significant ecosystems that are exposed require international protection, which depends on building a strong body of scientific evidence through co-ordinated polar science. Direct outputs from the ocean resulting from ocean productivity have been valued at $6.9trn, while that of the capacity of the oceans to absorb C is $4.3trn. The uncertainty in how climate change will impact these roles remains large, requiring both scientific and economic evaluation, and presenting a pressing challenge for both science and society.
气候变化正在威胁海洋为人类提供的两项关键生态系统服务:食物和大气碳储存。极地地区对两者都有重大影响,但也正在经历最剧烈和最迅速的变化。需要更好地了解影响海洋营养物质供应和生物加工的因素,以评估未来的风险,量化地球系统和人类对支持全球生产力和渔业的这一基本全球功能的依赖。氮(N)和磷(P)等关键营养素在全球海洋中的分布并不均匀,但在极地地区过量,通过海洋环流将其输出到低纬度地区。生物物质是通过结合氮,磷和碳(C)(和其他微量元素)产生的,其比例在全球海洋的大多数地区都或多或少相同。然而,在极地地区发现的比率有很大的不同。这是因为,首先,极地营养物质来自多种来源(冰川、海冰、河流和其他海洋)。其次,极地生态系统以不同的方式处理这些养分和碳。这导致i)营养过剩,从极地海洋输出并支持全球生产力,ii)碳从大气层运输到远离大气层的深层沃茨。紧迫的问题是,两极地区的快速气候变化正在改变其生态系统的营养供应和处理能力。这不仅威胁到人类赖以生存的海洋食物储备,也威胁到海洋中碳的生物消耗,而海洋是全球气候的关键调节器。由于地球系统模型(ESM)中极地地球化学和生态系统过程的代表性不足,我们完全识别和预测这种威胁的能力受到限制。BIOPOLE代表并联系了英国许多主要的环境研究机构,他们将与国家和国际合作伙伴合作解决这一问题。我们提出了一个雄心勃勃的集中观测,新颖的分析和计算机模拟的组合,从根本上提高我们的能力,以测量,理解和预测如何在极地地区的营养供应和碳储存将受到气候变化的影响。BIOPOLE将进一步确定和量化对海洋生产力和渔业的更广泛的全球影响。我们将在两极采样和收集数据,以便从整个地球系统的角度来看待这个问题。最新的实验和观测技术将描绘出独特的极地群落的碳和营养处理。它将包括使用新的自主技术来收集比单独使用船舶更长时间和更大区域的数据。全球建模将参考所产生的新认识,并与其他建模方法一起使用,以更好地量化极地海洋在维持全球海洋初级生产力和鱼类种群方面的作用,并预测未来趋势。两极的气候变化比其他任何地区都要快,导致海冰流失和冰川融化。有一个明确的紧迫性,在了解充分的地球化学和生态系统水平的影响,这些变化对极地地区本身和更广泛的地球系统。随着冰层的消融,暴露在外的脆弱且具有全球重要性的生态系统需要国际保护,这取决于通过协调极地科学来建立强有力的科学证据。海洋生产力产生的海洋直接产出价值为6.9万亿美元,而海洋吸收C的能力为4.3万亿美元。气候变化将如何影响这些角色的不确定性仍然很大,需要进行科学和经济评估,并对科学和社会提出了紧迫的挑战。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visual predation risk and spatial distributions of large Arctic copepods along gradients of sea ice and bottom depth
北极大型桡足类视觉捕食风险和沿海冰和海底深度梯度的空间分布
  • DOI:
    10.1002/lno.12354
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Langbehn T
  • 通讯作者:
    Langbehn T
Carbon storage shifts around Antarctica.
  • DOI:
    10.1038/s41467-022-31152-3
  • 发表时间:
    2022-06-14
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Meredith, Michael P.
  • 通讯作者:
    Meredith, Michael P.
Carbon and nutrient cycling in Antarctic landfast sea ice from winter to summer
从冬季到夏季南极陆地海冰的碳和营养物循环
  • DOI:
    10.1002/lno.12260
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Jones E
  • 通讯作者:
    Jones E
Internal tsunamigenesis and ocean mixing driven by glacier calving in Antarctica.
  • DOI:
    10.1126/sciadv.add0720
  • 发表时间:
    2022-11-25
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
  • 通讯作者:
Biogeochemistry of climate driven shifts in Southern Ocean primary producers
南大洋初级生产者气候驱动变化的生物地球化学
  • DOI:
    10.5194/bg-2023-10
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fisher B
  • 通讯作者:
    Fisher B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Geraint Tarling其他文献

Geraint Tarling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Geraint Tarling', 18)}}的其他基金

Chronobiology of changing Arctic Sea Ecosystems (CHASE)
变化的北冰洋生态系统的时间生物学(CHASE)
  • 批准号:
    NE/R012687/1
  • 财政年份:
    2018
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Research Grant
Mechanistic understanding of the role of diatoms in the success of the Arctic complex and implications for a warmer Arctic
对硅藻在北极综合体成功中的作用的机制理解以及对北极变暖的影响
  • 批准号:
    NE/P006213/1
  • 财政年份:
    2017
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Research Grant
Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS)
对海洋中层内部碳储存的控制(COMICS)
  • 批准号:
    NE/M020762/1
  • 财政年份:
    2017
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Research Grant
SeaDNA - Assessing marine biodiversity and structure using environmental DNA: from groundtruthing to food web structure and stability
SeaDNA - 使用环境 DNA 评估海洋生物多样性和结构:从地面实况到食物网结构和稳定性
  • 批准号:
    NE/N00616X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Research Grant
Ocean Acidification Impacts on Sea-Surface Biology, Biogeochemistry and Climate
海洋酸化对海表生物学、生物地球化学和气候的影响
  • 批准号:
    NE/H017267/1
  • 财政年份:
    2010
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Research Grant

相似国自然基金

Submesoscale Processes Associated with Oceanic Eddies
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    160 万元
  • 项目类别:

相似海外基金

Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319124
  • 财政年份:
    2024
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319125
  • 财政年份:
    2024
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Standard Grant
Wood functional trait variation as a critical driver of forest ecosystem processes and biogeochemical cycles
木材功能性状变异是森林生态系统过程和生物地球化学循环的关键驱动因素
  • 批准号:
    569069-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
FOR 1246: Kilimanjaro Ecosystems under Global Change: Linking Biodiversity, Biotic Interactions and Biogeochemical Ecosystem Processes
FOR 1246:全球变化下的乞力马扎罗生态系统:将生物多样性、生物相互作用和生物地球化学生态系统过程联系起来
  • 批准号:
    107847609
  • 财政年份:
    2010
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Research Units
Towards improved modelling of ocean biogeochemical processes and marine ecosystem responses to climate change
改进海洋生物地球化学过程和海洋生态系统对气候变化响应的建模
  • 批准号:
    261423-2004
  • 财政年份:
    2010
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Discovery Grants Program - Individual
Towards improved modelling of ocean biogeochemical processes and marine ecosystem responses to climate change
改进海洋生物地球化学过程和海洋生态系统对气候变化响应的建模
  • 批准号:
    261423-2004
  • 财政年份:
    2009
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Discovery Grants Program - Individual
Ecosystem restoration of bauxite-processing residue sand disposal areas in Western Australia: Important biogeochemical processes and effective fertilisation strategies
西澳大利亚铝土矿加工残砂处理区的生态系统恢复:重要的生物地球化学过程和有效的施肥策略
  • 批准号:
    LP0989670
  • 财政年份:
    2009
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Linkage Projects
Towards improved modelling of ocean biogeochemical processes and marine ecosystem responses to climate change
改进海洋生物地球化学过程和海洋生态系统对气候变化响应的建模
  • 批准号:
    261423-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Discovery Grants Program - Individual
Towards improved modelling of ocean biogeochemical processes and marine ecosystem responses to climate change
改进海洋生物地球化学过程和海洋生态系统对气候变化响应的建模
  • 批准号:
    261423-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 1137.15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了