How does stably-stratified shear-driven turbulence mix our oceans and estuaries?

稳定分层的剪切驱动湍流如何混合我们的海洋和河口?

基本信息

  • 批准号:
    NE/W008971/1
  • 负责人:
  • 金额:
    $ 89.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

This research is ultimately motivated by reducing the harmful consequences of climate change on society, in the UK and worldwide.The root of the problem is global warming, caused by the greenhouse effect of carbon dioxide from fossil fuels. As our atmosphere warms, so do our oceans, which directly affects biodiversity and causes sea levels to rise. As our oceans warm, the balance of forces that keep them in constant motion changes too, disrupting their worldwide circulation. This disruption is worrying, both in the short and long term, because the present circulation patterns perform at least two functions vital to our hospitable climate. First, vertical currents store excess heat and carbon deep into the ocean (slowing global warming). Second, North-South currents redistribute tropical heat to more temperate regions (reducing extreme weather and climate). Therefore, a weakening of these currents could accelerate climate change, with long-lasting societal consequences.To mitigate this, scientists try to predict how the world's climate will evolve by using advanced mathematical and computer models of the ocean circulation. However, these models and their predictions need to be improved to be of greater benefit to society and decision-makers. A serious cause of uncertainty in these models lies in the mixing between water currents that have different salinity or temperature (and thus density). Currents of different densities organise into vertically-stacked (or "stably-stratified") layers which flow past one another at different speeds (creating a "shear" flow). These flows are always turbulent, which means that a vast number of tiny chaotic "eddies" mix the salinity and temperature of much larger layers in complex and unpredictable ways.This fundamental but extremely challenging process of turbulent mixing in stably-stratified shear flows needs to be better understood. To do this, I will employ the following scientific approach in three steps.First, I will use an accurate, reduced-scale model of such flows in the laboratory. This has two great benefits: it gives full control over the flow geometry, the density difference, flow speed, etc, allowing me to test and understand the influence of each parameter separately; and it allows me to use high-tech measurements to quantify the chaotic eddies and their mixing better than ever before.Second, I will interpret these new laboratory measurements with mathematical models of turbulent mixing to generalise (or "extrapolate") my findings to real-scale flows found in the ocean. This crucial step relies on the power of "dimensional analysis" in fluid dynamics, which is also routinely used by engineers to develop new aircraft or ship designs from smaller-scale laboratory prototypes.Third, I will verify the validity of my real-scale predictions by comparing them to actual measurements taken from ships (which are usually sparse, expensive, and less accurate). This step is similar to engineers performing a full-scale test before production, except that we have no control over the ocean. Although challenging, this "validation" step will help ensure that my whole approach succeeds in providing climate scientists with more accurate models for ocean mixing.In addition to the long-term effects of global warming, I will also apply the above three steps to a shorter-term consequence: saltwater intrusions in estuaries. Sea level rise, more frequent droughts, extreme storm surges, and stronger tides will all increase the gradual encroachment of seawater in densely-populated deltas (including the important Thames Basin in the UK). The upstream intrusion of a dense saltwater layer beneath the fresh river water, and their vertical mixing reduce the availability of surface freshwater, with devastating consequences for coastal communities already felt around the world. I will develop more accurate models of mixing in saltwater intrusions to help mitigate this urgent problem.
这项研究的最终目的是减少气候变化对英国和世界各地社会的有害影响。问题的根源是全球变暖,这是由化石燃料产生的二氧化碳的温室效应造成的。随着我们的大气层变暖,我们的海洋也在变暖,这直接影响到生物多样性,并导致海平面上升。随着我们的海洋变暖,使它们不断运动的力量平衡也发生了变化,扰乱了它们的全球循环。这种破坏在短期和长期都令人担忧,因为目前的环流模式至少对我们的宜人气候起着两种至关重要的作用。首先,垂直洋流将多余的热量和碳储存在海洋深处(减缓全球变暖)。其次,南北洋流将热带的热量重新分配到更温和的地区(减少极端天气和气候)。因此,这些洋流的减弱可能会加速气候变化,带来长期的社会后果。为了缓解这一问题,科学家们试图通过使用先进的海洋环流数学和计算机模型来预测世界气候将如何演变。然而,这些模型及其预测需要改进,以便为社会和决策者带来更大的利益。这些模型中不确定性的一个严重原因在于具有不同盐度或温度(以及密度)的水流之间的混合。不同密度的水流组织成垂直堆叠(或“稳定分层”)的层,这些层以不同的速度彼此流过(产生“剪切”流)。这些流动总是湍流的,这意味着大量微小的混乱“漩涡”以复杂和不可预测的方式混合了更大层的盐度和温度。需要更好地理解稳定分层剪切流中湍流混合的基本但极具挑战性的过程。为了做到这一点,我将分三步采用以下科学方法。首先,我将在实验室中使用此类流动的准确的缩小比例模型。这有两大好处:它可以完全控制流动的几何形状、密度差、流速等,使我能够分别测试和了解每个参数的影响;它使我能够使用高科技测量来量化混乱的漩涡和它们的混合比以往任何时候都好。第二,我将用湍流混合的数学模型来解释这些新的实验室测量结果,以进行概括(或“外推”)我的发现,以实际规模的流动发现在海洋中。这一关键步骤依赖于流体动力学中“量纲分析”的力量,工程师也经常使用它来从较小规模的实验室原型开发新的飞机或船舶设计。第三,我将通过将我的真实规模预测与从船舶上获得的实际测量结果(通常是稀疏的,昂贵的,准确性较差)进行比较来验证我的真实规模预测的有效性。这一步类似于工程师在生产前进行全面测试,只是我们无法控制海洋。尽管具有挑战性,但这个“验证”步骤将有助于确保我的整个方法成功地为气候科学家提供更准确的海洋混合模型。除了全球变暖的长期影响外,我还将将上述三个步骤应用于短期后果:河口的盐水入侵。海平面上升、更频繁的干旱、极端风暴潮和更强的潮汐都将增加海水对人口密集的三角洲(包括英国重要的泰晤士河流域)的逐渐侵蚀。淡水之下的密集盐水层的上游侵入及其垂直混合减少了地表淡水的可用性,对世界各地的沿海社区造成了破坏性后果。我将开发更精确的盐水入侵混合模型,以帮助缓解这一紧迫问题。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long-wave instabilities of sloping stratified exchange flows
倾斜分层交换流的长波不稳定性
  • DOI:
    10.17863/cam.105663
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhu L
  • 通讯作者:
    Zhu L
New insights into experimental stratified flows obtained through physics-informed neural networks
  • DOI:
    10.1017/jfm.2024.49
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Lu Zhu;Xianyang Jiang;A. Lefauve;R. Kerswell;P. Linden
  • 通讯作者:
    Lu Zhu;Xianyang Jiang;A. Lefauve;R. Kerswell;P. Linden
Stratified inclined duct: two-layer hydraulics and instabilities
分层倾斜风管:两层水力学和不稳定性
  • DOI:
    10.1017/jfm.2023.871
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Atoufi A
  • 通讯作者:
    Atoufi A
Geometry of stratified turbulent mixing: local alignment of the density gradient with rotation, shear and viscous dissipation
分层湍流混合的几何形状:密度梯度与旋转、剪切和粘性耗散的局部对齐
  • DOI:
    10.1017/jfm.2023.833
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jiang X
  • 通讯作者:
    Jiang X
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrien Lefauve其他文献

Adrien Lefauve的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

衍射光学三维信息加密与隐藏的研究
  • 批准号:
    60907004
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
  • 批准号:
    DE240100614
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Discovery Early Career Researcher Award
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Training Grant
Does deformation lead to misinformation? How much can granitic rocks deform before accessory minerals are geochemically disturbed?
变形会导致错误信息吗?
  • 批准号:
    2342159
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Standard Grant
The excess gas paradox at volcanoes: does CO2 favor gas accumulation in mafic magmas?
火山中的过量气体悖论:二氧化碳是否有利于镁铁质岩浆中的气体积累?
  • 批准号:
    2322935
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Continuing Grant
Does chronic thyroid inflammation explain persistent symptoms in Hashimoto thyroiditis?
慢性甲状腺炎症是否可以解释桥本甲状腺炎的持续症状?
  • 批准号:
    MR/Z503617/1
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Research Grant
Does the functional load principle predict to how non-native English speakers assess the pronunciation intelligibility of Japanese non-native English speakers?
功能负荷原则是否可以预测非英语母语人士如何评估日语非英语母语人士的发音清晰度?
  • 批准号:
    24K04051
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Meiosis in Plasmodium: How does it work?
疟原虫减数分裂:它是如何运作的?
  • 批准号:
    BB/X014681/1
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Research Grant
How does membrane lipid remodelling enable intracellular survival of B. cenocepacia?
膜脂重塑如何使新洋葱伯克霍尔德氏菌在细胞内存活?
  • 批准号:
    BB/X01651X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: EAR-PF: Does topographic stress connect subsurface to surface through influencing bedrock strength, clast size, and landslides?
博士后奖学金:EAR-PF:地形应力是否通过影响基岩强度、碎屑尺寸和山体滑坡将地下与地表连接起来?
  • 批准号:
    2305448
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Fellowship Award
When does a supershedder become a superspreader?: The impact of individual-level heterogeneities on population-level transmission and spread
超级传播者何时成为超级传播者?:个体水平异质性对群体水平传播和传播的影响
  • 批准号:
    NE/X01424X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 89.48万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了