NSFGEO-NERC: HUrricane Risk Amplification and Changing North Atlantic Natural disasters (Huracan)

NSFGEO-NERC:飓风风险放大和改变北大西洋自然灾害(飓风)

基本信息

  • 批准号:
    NE/W009587/1
  • 负责人:
  • 金额:
    $ 301.5万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Tropical cyclones (TCs) are one of the most dangerous natural hazards on Earth. Known as hurricanes in the North Atlantic, TCs represent ~30% ($75bn) of global annual losses due to all natural hazards, to which all our societies are - at least economically - exposed. Understanding future changes in TC frequency and strength are active, challenging and critical research areas. The term 'tropical' suggests that the lifetime and impacts of TCs are confined to the tropics, but this is not the case. Some tropical cyclones (TCs) migrating into the mid-latitudes retain the physical characteristics of a hurricane, while others structurally evolve into post-tropical cyclones (PTCs). Both types (which we collectively call CTOs) can be extremely intense and their hazards set them apart from typical extratropical cyclones, the type of storm our societies are adapted to in mid-latitudes.Recent events, and ongoing research, have brought into sharp focus the dangers posed by CTOs to the North-East United States (NEUS), as well as the British Isles and Western Europe (BIWE). North of 30N, events in the last ten years have been the most costly on record, causing loss of life and widespread severe damage: Ophelia totalled $70m in Ireland; Sandy alone totalled US$17bn in New York City; Henri and Ida in autumn 2021 caused $31-44bn in losses around New York State. More generally, and despite uncertainty due to decadal variability, there are indications that the number of CTOs reaching the midlatitudes has increased, consistent with projections of CTOs making landfall in BIWE, in the future. Future projections, despite uncertainties, highlight the increasing likelihood of a CTO landfall over BIWE/NEUS. Even if such events should be rare, the potential consequences are alarming; for instance, our homes and infrastructure are not designed to resist hurricane-intensity winds, nor the associated flooding. Although our weather-forecasting centres surveil tropical weather, our early-warning systems remain largely untested against CTOs. Risk assessment is held back by a fundamental lack of information: while some UK and US records exist as far back as 1860, the US National Hurricane Center only began recording non-US landfalls in 1991 and a complete analysis of TCs east of 30W only in 2005. Very little research exists for the eastern side of the Atlantic. According to analysis of 7 reanalysis datasets since 1979, 3-5 CTOs reach NEUS and 1-2 CTOs reach BIWE each year.How can we address these shortcomings? Continued surveillance (e.g. with new satellite products) is key. Complementing observations are model data, for instance the climate 'reanalyses', typically spanning the last 50-100 years. Additionally, we need far more physically plausible evidence, and physical reasoning, for robust risk assessment.Huracán will:1. make use of the latest developments in numerical simulation, with 1-3km grid-spacing (similar to the concept of pixel size in a digital camera) enabling us to fundamentally change how we simulate the processes leading to the birth (genesis) of CTOs.2. tap into a wealth of potential case studies contained in ensembles of seasonal prediction model simulations, which offer multiple versions of 'could-have-been' CTOs and augment the sample size by a factor of order 100.3. combine all the data products in 1) and 2) to construct plausible physical routes (storylines) for a CTO landfall and to identify what the worst-case scenarios could be in terms of wind, storm surge, precipitation (both leading to extreme flooding) and enable future planning.Huracán will leverage state-of-the-art capabilities (theory, simulation, process analysis) across leading institutions on both sides of the Atlantic, and harness international collaborations to address two pivotal issues: (i) the key factors that influence the formation and evolution of CTOs reaching the midlatitudes; (ii) what governs mid-latitude landfall of the most hazardous CTOs.
热带气旋是地球上最危险的自然灾害之一。TC被称为北大西洋的飓风,占所有自然灾害造成的全球年度损失的约30%(750亿美元),我们所有的社会都面临着这些自然灾害-至少在经济上是如此。了解TC频率和强度的未来变化是活跃的,具有挑战性和关键的研究领域。“热带”一词意味着热带气旋的寿命和影响仅限于热带地区,但事实并非如此。一些迁移到中纬度的热带气旋(TC)保留了飓风的物理特征,而另一些则在结构上演变成后热带气旋(PTC)。这两种类型(我们统称为CTO)都可能非常强烈,它们的危害将它们与典型的热带气旋(我们的社会适应于中纬度地区的风暴类型)区分开来。最近的事件和正在进行的研究使CTO对美国东北部(NEUS)以及不列颠群岛和西欧(BIWE)构成的危险成为焦点。在30 N以北,过去十年的事件是有记录以来代价最高的,造成了生命损失和广泛的严重破坏:奥菲利亚在爱尔兰总计7000万美元;仅桑迪在纽约市就总计170亿美元; 2021年秋季的亨利和艾达在纽约州造成了310亿至440亿美元的损失。更普遍的是,尽管由于年代际变化的不确定性,有迹象表明,到达中纬度地区的CTO数量有所增加,与未来在BIWE登陆的CTO的预测一致。尽管存在不确定性,但未来的预测强调了CTO登陆BIWE/NEUS的可能性越来越大。即使这样的事件应该是罕见的,潜在的后果是令人震惊的;例如,我们的房屋和基础设施的设计不能抵御飓风强度的风,也不能抵御相关的洪水。虽然我们的天气预报中心监测热带天气,但我们的预警系统在很大程度上还没有经过热带风暴的考验。风险评估受到基本信息缺乏的阻碍:虽然英国和美国的一些记录可以追溯到1860年,但美国国家飓风中心直到1991年才开始记录非美国登陆,直到2005年才开始对30 W以东的TC进行完整分析。对大西洋东岸的研究很少。根据对1979年以来7个再分析数据集的分析,每年有3-5个CTO达到NEUS,1-2个CTO达到BIWE,如何解决这些问题?持续的监测(例如使用新的卫星产品)是关键。补充观测的是模型数据,例如气候“再分析”,通常跨越过去50-100年。此外,我们需要更多的物理上可信的证据和物理推理,以进行可靠的风险评估。利用数值模拟的最新发展,1- 3公里的网格间距(类似于数码相机中像素大小的概念)使我们能够从根本上改变我们模拟CTOs诞生(起源)过程的方式。利用季节性预测模型模拟集合中包含的大量潜在案例研究,这些案例提供了多个版本的“可能是”CTO,并将样本量增加了100.3倍。联合收割机将1)和2)中的所有数据产品组合起来,以构建合理的物理路径(故事情节)的CTO登陆,并确定最坏的情况下,可能是风,风暴潮,降水(两者都导致极端洪水),并使未来的规划。飓风将利用最先进的能力,(理论,模拟,过程分析)在大西洋两岸的领先机构,并利用国际合作,以解决两个关键问题:(i)影响到达中纬度的热带涛动的形成和演变的关键因素;(ii)是什么决定了最危险的热带涛动在中纬度登陆。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pier Luigi Vidale其他文献

高分解能台風シミュレーションのための海面境界物理過程の改良
高分辨率台风模拟海面边界物理过程的改进
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉野 純;Jane Strachan;Pier Luigi Vidale
  • 通讯作者:
    Pier Luigi Vidale
Projected future changes in bomb cyclones by the HighResMIP-PRIMAVERA multimodel ensemble
  • DOI:
    10.1007/s00382-024-07327-7
  • 发表时间:
    2024-07-22
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Jiaxiang Gao;Shoshiro Minobe;Malcolm J. Roberts;Rein Haarsma;Dian Putrasahan;Enrico Scoccimarro;Laurent Terray;Pier Luigi Vidale
  • 通讯作者:
    Pier Luigi Vidale
猛烈な勢力の台風の全生涯に対する高解像度・高効率予測技術の開発
开发高分辨率、高效率的强台风全生命周期预报技术
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉野 純;Jane Strachan;Pier Luigi Vidale
  • 通讯作者:
    Pier Luigi Vidale
フィールドにおける適切な分散長の評価法とは
评估现场色散长度的适当方法是什么?
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉野 純;Jane Strachan;Pier Luigi Vidale;中川 啓,神野健二
  • 通讯作者:
    中川 啓,神野健二
Counting the coming storms
数着即将到来的风暴
  • DOI:
    10.1038/nclimate1639
  • 发表时间:
    2012-07-27
  • 期刊:
  • 影响因子:
    27.100
  • 作者:
    Ed Hawkins;Pier Luigi Vidale
  • 通讯作者:
    Pier Luigi Vidale

Pier Luigi Vidale的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pier Luigi Vidale', 18)}}的其他基金

HydrOlogical cYcle Understanding vIa Process-bAsed GlObal Detection, Attribution and prediction (Horyuji PAGODA)
通过基于过程的全球检测、归因和预测了解水文循环(Horyuji PAGODA)
  • 批准号:
    NE/I006672/1
  • 财政年份:
    2011
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Research Grant
Soil Water - Climate Feedbacks in Europe in the 21st Century (SWELTER-21)
土壤水 - 21 世纪欧洲的气候反馈 (SWELTER-21)
  • 批准号:
    NE/I006834/1
  • 财政年份:
    2011
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Research Grant
Integrated Carbon, Water and Land Management for Poverty Alleviation
碳、水、土地综合管理扶贫
  • 批准号:
    NE/I00307X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Research Grant

相似海外基金

NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    NE/X000656/1
  • 财政年份:
    2025
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Research Grant
NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
  • 批准号:
    NE/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    NE/Z000254/1
  • 财政年份:
    2025
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Research Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317936
  • 财政年份:
    2024
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317938
  • 财政年份:
    2024
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Standard Grant
NERC-NSFGEO: Imaging the magma storage region and hydrothermal system of an active arc volcano
NERC-NSFGEO:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    2404029
  • 财政年份:
    2024
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334541
  • 财政年份:
    2024
  • 资助金额:
    $ 301.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了