LOW FREQUENCY MODES & THEIR ROLE IN EQUILIBRATION
低频模式
基本信息
- 批准号:6281051
- 负责人:
- 金额:$ 0.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 1999-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Vibrational transitions are sensitive to temperature (frequency
shifts and bandwidth changes) so we are developing transient IR
methods to study heat transport in proteins and other structures in
aqueous solutions. In particular, the IR spectrum of water is
modified by heating which breaks hydrogen bonds and the proposed
methods can measure changes of ca. 0.02 C. In currently planned
experiments the changes in temperature arising from the flow of energy
from a heme group is studied. The heating step might also be effected
by means of an infrared pulse. Specifically, the system proposed as a
test bed for this technology are Mb, Hb and Cyt-C derivatives having
different ligands. After optical excitation, the ligand may
dissociate. The energy of dissociation can go directly to heating the
immediate surroundings but the energy retained as internal vibrational
energy is bottlenecked. Some energy may be released or consumed in
protein structural changes associated with ligand dissociation. The
released thermal energy is used to excite mainly low frequency modes
of the surroundings. There are not yet answers to how the energy
released at the heme flows through the protein which ultimately heats
the surrounding H2O. For example, is the protein measurably isotropic
or anisotropic in regard to its thermal diffusivity? Does energy
bottleneck in specific global structural regions of the protein? Can
we find a quantitative theoretical description of the initially
created hot spectra? These questions can be addressed directly by
probing the IR spectra of transitions in the H2O and the protein that
have known temperature dependence.
振动跃迁对温度(频率)很敏感
移位和带宽变化),因此我们正在开发瞬时IR
研究蛋白质和其他结构中热传输的方法
水溶液。特别是,水的红外光谱是
通过加热破坏氢键而改变的,并建议
方法可以测量目前计划中约0.02℃的变化
对能量流动引起的温度变化进行实验
从一个亚铁血红素基团中分离得到。也可以实现加热步骤
通过红外线脉冲。具体地说,该系统被提议作为
这项技术的试验台是Mb、Hb和Cyt-C衍生物,它们具有
不同的配体。在光激发后,配体可以
分离。离解的能量可以直接用于加热
直接的环境,但作为内部振动保留的能量
能源受到了瓶颈制约。一些能量可能会在体内释放或消耗
与配体解离相关的蛋白质结构变化。这个
释放的热能主要用来激励低频模式
对周围环境的影响。关于能量是如何产生的还没有答案
在血红素处释放的蛋白质流经最终加热的蛋白质
周围的水。例如,蛋白质是否可测量为各向同性
还是关于其热扩散率的各向异性?那么能源呢?
在蛋白质的特定全球结构区域中存在瓶颈?能
我们找到了对初始状态的定量理论描述
创造了热光谱?这些问题可以通过以下方式直接解决
探索H2O和蛋白质中跃迁的红外光谱
具有已知的温度依赖性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C M PHILLIPS其他文献
C M PHILLIPS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}